主模式第三包:main_inR1_outI2

1. 序言

main_inR1_outI2()函数是ISAKMP协商过程中第三包的核心处理函数的入口。这里我们主要说明main_inR1_outI2的函数调用关系、处理流程以及对源码的注释分析,关于main_inR1_outI2的上下文环境暂不叙述,留给后面的文章进行更新。

ISAKMP协商报文的处理流程都比较复杂,一个函数有几百行都是很常见的,因此个人学习期间难免有遗漏和理解错误的地方,请大家多多批评指正。

对于源码的学习,我并没有把每一行进行备注,而是将自己认为的关键点做了注释或者标注。


2. 函数调用关系

注意:这里我把收到对方报文后的处理流程也添加上了,主要是在学习源码过程中遇到complete_v1_state_transition执行了两次

  • process_v1_packet

    • process_packet_tail

      • smc->processor(md)

        • main_inR1_outI2

          • build_ke

            • send_crypto_helper_request

              • pluto_do_crypto_op
              • main_inR1_outI2_continue
                • main_inR1_outI2_tail

                  • init_pbs
                  • ship_KE
                  • ship_nonce
                  • nat_traversal_add_natd
                  • close_message
                  • insert_state
                • complete_v1_state_transition
      • complete_v1_state_transition

3. 第三个报文流程图

由于第三个报文的核心处理函数包含多个,不仅仅包含main_inR1_outI2, 因此这里会将涉及的关键函数接口都添加到流程图中,方便根据函数定位对应的功能。


  • 解析对端发送的SA载荷,确定对端选择的算法,并将其存储在状态/连接上
  • 生成秘钥交换材料和Nonce信息
  • 构造应答报文(第四个报文)
    • 填充KE载荷和Nonce载荷

4. main_inR1_outI2源码注释

  • 解析收到的第二个报文,确定对端选择的算法,并将算法存储在状态结构上
  • 申请生成交换密钥信息
stf_status
main_inR1_outI2(struct msg_digest *md)
{
struct state *const st = md->st; /* verify echoed SA */
{/*md->chain为解析完毕的收到的报文,下标为np的值*/
struct payload_digest *const sapd = md->chain[ISAKMP_NEXT_SA]; /*解析对端SA, 由于无需填充应答SA因此第三个参数为NULL*/
RETURN_STF_FAILURE(parse_isakmp_sa_body(&sapd->pbs
, &sapd->payload.sa
, NULL, TRUE, st));
} #ifdef NAT_TRAVERSAL
DBG(DBG_NATT, DBG_log("sender checking NAT-T: %d and %d"
, nat_traversal_enabled
, md->quirks.nat_traversal_vid)) if (nat_traversal_enabled && md->quirks.nat_traversal_vid) {/*获取NAT-T采用的标准*/
st->hidden_variables.st_nat_traversal = nat_traversal_vid_to_method(md->quirks.nat_traversal_vid);
openswan_log("enabling possible NAT-traversal with method %s"
, bitnamesof(natt_type_bitnames, st->hidden_variables.st_nat_traversal));
}
#endif {/*密钥交换*/
struct ke_continuation *ke = alloc_thing(struct ke_continuation
, "outI2 KE");
ke->md = md; passert(st->st_sec_in_use==FALSE);/*是否已经加密,是的话,状态有误,返回退出*/
pcrc_init(&ke->ke_pcrc);
ke->ke_pcrc.pcrc_func = main_inR1_outI2_continue;
set_suspended(st, md);
/*构建秘钥交换载荷信息*/
return build_ke(&ke->ke_pcrc, st, st->st_oakley.group, st->st_import);
}
}

5. build_ke源码注释

  • 初始化并发送加密请求

    • 生成加密材料、Nonce载荷、构建应答报文在send_crypto_helper_request及其以后。
  • 完成报文发送后的后续操作
stf_status build_ke(struct pluto_crypto_req_cont *cn
, struct state *st
, const struct oakley_group_desc *group
, enum crypto_importance importance)
{
struct pluto_crypto_req rd;
struct pluto_crypto_req *r = &rd;
err_t e;
bool toomuch = FALSE;
/*初始化加密请求*/
pcr_init(r, pcr_build_kenonce, importance);
r->pcr_d.kn.oakley_group = group->group; cn->pcrc_serialno = st->st_serialno;
/*发送加密请求*/
e= send_crypto_helper_request(r, cn, &toomuch); if(e != NULL) {/*加密失败*/
loglog(RC_LOG_SERIOUS, "can not start crypto helper: %s", e);
if(toomuch) {
return STF_TOOMUCHCRYPTO;
} else {
return STF_FAIL;
}
} else if(!toomuch) {/*加密任务繁忙,先挂起等待再次调度*/
st->st_calculating = TRUE;
delete_event(st);
event_schedule(EVENT_CRYPTO_FAILED, EVENT_CRYPTO_FAILED_DELAY, st);
return STF_SUSPEND;
} else {
/* we must have run the continuation directly, so
* complete_v1_state_transition already got called.
* 由于我们已经手动执行了main_inR1_outI2_continue(),该函数最终会调用到complete_v1_state_transition, 因此在(process_v1_state_xxx流程中不必再此执行状态转换函数。因此返回STF_INLINE,当再次到complete_v1_state_transition判断返回值为它,则不再执行此函数。)
*/
return STF_INLINE;
}
}

6. send_crypto_helper_request源码注释

  • 生成秘钥信息(KE信息、Nonce信息),并存储在r中;
  • 执行后续处理函数:main_inR1_outI2_continue
/*
* this function is called with a request to do some cryptographic operations
* along with a continuation structure, which will be used to deal with
* the response.
*
* This may fail if there are no helpers that can take any data, in which
* case an error is returned.
*
*/
err_t send_crypto_helper_request(struct pluto_crypto_req *r
, struct pluto_crypto_req_cont *cn
, bool *toomuch)
{
struct pluto_crypto_worker *w;
int cnt; /* do it all ourselves? */
if(pc_workers == NULL) {/*据说一般会执行此分支*/
reset_cur_state(); /*生成nonce值相关*/
#ifdef HAVE_LIBNSS
pluto_do_crypto_op(r,pc_helper_num);
#else
pluto_do_crypto_op(r);
#endif
/* call the continuation */
(*cn->pcrc_func)(cn, r, NULL);//1 /*执行后续函数,如main_inR1_outI2_continue等*/ /* indicate that we did everything ourselves */
*toomuch = TRUE; pfree(cn);
return NULL;
}
/*后续代码尚未整理,暂不考虑*/
... ...
}

7. send_crypto_helper_request源码注释

  • 通过main_inR1_outI2_tail构建应答报文
  • 通过complete_v1_state_transition完成报文的发送和后续的状态切换等。
/*
* STATE_MAIN_I1: HDR, SA --> auth dependent
* PSK_AUTH, DS_AUTH: --> HDR, KE, Ni
*
* We do heavy computation here. For Main Mode, this is mostly okay,
* since have already done a return routeability check.
*
*/
static void
main_inR1_outI2_continue(struct pluto_crypto_req_cont *pcrc
, struct pluto_crypto_req *r
, err_t ugh)
{
struct ke_continuation *ke = (struct ke_continuation *)pcrc;
struct msg_digest *md = ke->md;
struct state *const st = md->st;
stf_status e; ... ... /*中间调试信息代码略去*/ e = main_inR1_outI2_tail(pcrc, r);/*构造应答报文(第四包)*/ if(ke->md != NULL) {
complete_v1_state_transition(&ke->md, e);/*完成状态转换、发送报文,...*/
if(ke->md) release_md(ke->md);
} reset_cur_state();
}

8. main_inR1_outI2_tail源码注释

  • 构建ISAKMP头部信息
  • 构建KE载荷
  • 构建Nonce载荷
  • 构建NAT-d载荷
  • 载荷添加完毕,关闭应答buf, 确定ISAKMP报文长度并填充长度字段。
/* STATE_MAIN_I1: HDR, SA --> auth dependent
* PSK_AUTH, DS_AUTH: --> HDR, KE, Ni
*
* The following are not yet implemented:
* PKE_AUTH: --> HDR, KE, [ HASH(1), ] <IDi1_b>PubKey_r, <Ni_b>PubKey_r
* RPKE_AUTH: --> HDR, [ HASH(1), ] <Ni_b>Pubkey_r, <KE_b>Ke_i,
* <IDi1_b>Ke_i [,<<Cert-I_b>Ke_i]
*
* We must verify that the proposal received matches one we sent.
*/
static stf_status
main_inR1_outI2_tail(struct pluto_crypto_req_cont *pcrc
, struct pluto_crypto_req *r)
{
struct ke_continuation *ke = (struct ke_continuation *)pcrc;
struct msg_digest *md = ke->md;
struct state *const st = md->st; /**************** build output packet HDR;KE;Ni ****************/
init_pbs(&reply_stream, reply_buffer, sizeof(reply_buffer), "reply packet"); /* HDR out.
* We can't leave this to comm_handle() because the isa_np
* depends on the type of Auth (eventually).
*/
/*下一个载荷:密钥交换. 填充ISAKMP头部信息*/
echo_hdr(md, FALSE, ISAKMP_NEXT_KE);/*reply_stream-----md->rbody*/ /* KE out */
/*填充密钥交换载荷,同时状态上记录了密钥的相关信息*/
if (!ship_KE(st, r , &st->st_gi
, &md->rbody, ISAKMP_NEXT_NONCE))
return STF_INTERNAL_ERROR; /*填充Nonce载荷*/
#ifdef DEBUG
/* Ni out */
if (!ship_nonce(&st->st_ni, r, &md->rbody
, (cur_debugging & IMPAIR_BUST_MI2)? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, "Ni"))
return STF_INTERNAL_ERROR; if (cur_debugging & IMPAIR_BUST_MI2)
{
/* generate a pointless large VID payload to push message over MTU */
pb_stream vid_pbs; if (!out_generic(ISAKMP_NEXT_NONE, &isakmp_vendor_id_desc, &md->rbody
, &vid_pbs))
return STF_INTERNAL_ERROR;
if (!out_zero(1500 /*MTU?*/, &vid_pbs, "Filler VID"))
return STF_INTERNAL_ERROR;
close_output_pbs(&vid_pbs);
}
#else
/* Ni out */
if (!ship_nonce(&st->st_ni, r, &md->rbody, ISAKMP_NEXT_NONE, "Ni"))
return STF_INTERNAL_ERROR;
#endif
/*填充NAT-D载荷*/
#ifdef NAT_TRAVERSAL
DBG(DBG_NATT, DBG_log("NAT-T checking st_nat_traversal for NAT_T_WITH_NATD"));
if (st->hidden_variables.st_nat_traversal & NAT_T_WITH_NATD) {
DBG(DBG_NATT, DBG_log("NAT-T found NAT_T_WITH_NATD"));
if (!nat_traversal_add_natd(ISAKMP_NEXT_NONE, &md->rbody, md))
return STF_INTERNAL_ERROR;
}
#endif /* finish message 报文构建结束,确定报文长度*/
close_message(&md->rbody); /* Reinsert the state, using the responder cookie we just received */
//将st从哈希表中删除
unhash_state(st);/*unhash_state:使用二级指针从双向链表中删除st节点*/
memcpy(st->st_rcookie, md->hdr.isa_rcookie, COOKIE_SIZE);
/*重新计算hash值,并插入全局状态链表中*/
insert_state(st); /* needs cookies, connection, and msgid (0) */ return STF_OK;
}

9. NAT-D载荷中哈希值说明

在NAT-D载荷中,hash值的计算公式为:

H

A

S

H

(

C

K

Y

I

C

K

Y

R

I

P

P

O

R

T

)

HASH(CKY-I | CKY-R | IP | PORT)

HASH(CKY−I∣CKY−R∣IP∣PORT)
即分别计算发起者cookie、相应者cookie、IP、端口四个信息的哈希值。对端收到后通过计算报文信息的哈希值和报文中的NAT-D载荷的哈希值相比较,以此来确定中间是否存在NAT设备。

bool nat_traversal_add_natd(u_int8_t np, pb_stream *outs,
struct msg_digest *md)
{
unsigned char hash[MAX_DIGEST_LEN];
struct state *st = md->st;
unsigned int nat_np;
const ip_address *first, *second;
unsigned short firstport, secondport; passert(st->st_oakley.prf_hasher); DBG(DBG_EMITTING|DBG_NATT, DBG_log("sending NAT-D payloads")); nat_np = (st->hidden_variables.st_nat_traversal & NAT_T_WITH_RFC_VALUES
? ISAKMP_NEXT_NATD_RFC : ISAKMP_NEXT_NATD_DRAFTS); if (!out_modify_previous_np(nat_np, outs)) {/*修改上一个载荷的np字段*/
return FALSE;
} /*获取本端和对端的IP和端口*/
first = &(md->sender);
firstport = ntohs(st->st_remoteport);
second = &(md->iface->ip_addr);
secondport = ntohs(st->st_localport); if(st->st_connection->forceencaps) {/*强制封装*/
DBG(DBG_NATT, DBG_log("NAT-T: forceencaps=yes, so mangling hash to force NAT-T detection"));
firstport=secondport=0;
} /**
* First one with sender IP & port
*/
/*计算对端的哈希值: rcookie, icookie, ip, port*/
_natd_hash(st->st_oakley.prf_hasher, hash, st->st_icookie
, is_zero_cookie(st->st_rcookie) ? md->hdr.isa_rcookie : st->st_rcookie
, first, firstport); if (!out_generic_raw(nat_np, &isakmp_nat_d, outs
, hash
, st->st_oakley.prf_hasher->hash_digest_len
, "NAT-D")) {
return FALSE;
} /**
* Second one with my IP & port
*/
/*计算本端的哈希值: rcookie, icookie, ip, port*/
_natd_hash(st->st_oakley.prf_hasher, hash
, st->st_icookie
, is_zero_cookie(st->st_rcookie) ? md->hdr.isa_rcookie : st->st_rcookie
, second, secondport);
return (out_generic_raw(np, &isakmp_nat_d, outs,
hash, st->st_oakley.prf_hasher->hash_digest_len, "NAT-D"));
}

openswan协商流程之(三):main_inR1_outI2的更多相关文章

  1. openswan协商流程之(一):main_outI1()

    主模式第一包:main_outI1() 1. 序言 main_outI1()作为主模式主动发起连接请求的核心处理函数,我们可以通过学习该函数的处理流程来探究openswan中报文封装的基本思想.如果之 ...

  2. openswan协商流程之(七):main_inR3

    主模式第六包(收包):main_inR3 1. 序言 main_inR3()函数是ISAKMP协商过程中第一阶段的最后一个报文的接收处理函数,它的作用同main_inI3_outR3()部分功能相同: ...

  3. openswan协商流程之(五):main_inR2_outI3()

    主模式第五包:main_inR2_outI3 文章目录 主模式第五包:main_inR2_outI3 1. 序言 2.函数调用关系 3. 第五个报文流程图 4. main_inR2_outI3()源码 ...

  4. openswan协商流程之(四):main_inI2_outR2()

    主模式第四包:main_inI2_outR2 1. 序言 main_inI2_outR2()函数是ISAKMP协商过程中第四包的核心处理函数的入口,同时在此处理流程中已经获取到足够的隧道信息,可以生成 ...

  5. openswan协商流程之(六):main_inI3_outR3()

    主模式第六包:main_inI3_outR3 1. 序言 main_inI3_outR3()函数是ISAKMP协商过程中第六包的核心处理函数的入口,第五六包主要用来验证对方的身份信息,同时此报文也是加 ...

  6. openswan协商流程之(二):main_inI1_outR1()

    主模式第二包:main_inI1_outR1() 文章目录 主模式第二包:main_inI1_outR1() 1. 序言 2. `main_inI1_outR1()`处理流程图 3. `main_in ...

  7. IKEv2协议协商流程: (IKE-SA-INIT 交换)第二包

    IKEv2协议协商流程: (IKE-SA-INIT 交换)第二包 文章目录 IKEv2协议协商流程: (IKE-SA-INIT 交换)第二包 1. IKEv2 协商总体框架 2. 第二包流程图 3. ...

  8. Hibernate的工作流程以及三种状态(面试题)

    Hibernate的工作流程以及三种状态 部分转载自:http://www.cnblogs.com/fifiyong/p/6390699.html Hibernate的工作流程: 1. 读取并解析配置 ...

  9. IKEv2协议协商流程: (IKE-SA-INIT 交换)第一包

    文章目录 1. IKEv2 协商总体框架 2. 第一包流程图 3. openswan源码学习 3.1 ikev2parent_outI1() 3.2 ikev2parent_outI1_withsta ...

随机推荐

  1. GoogleTest死亡测试的跨平台BUG

    最近工作用到了GoogleTest来作单元测试,但是死亡测试的ASSERT_DEATH语句一直跑不通. GoogleTest会启动子进程来运行代码,并捕捉子进程的错误消息,这就是所谓的"死亡 ...

  2. SQL语句(cmd)

    引言 可视化界面采用的是SQLyog 在SQL语句中--表示单行注释,/**/表示多行注释 命令行操作数据库 启动MySQL服务----net start mysql 连接数据库----mysql - ...

  3. 【NLP学习其四】如何构建自己用于训练的数据集?什么是词性标注?

    数据集与词性标注 数据集是NLP中的重要一环. 但是提到数据集,很多人的第一个想法可能是:"这玩意从网上下载就好了,不用管". 真的不用管?最开始我也是这么认为的 于是我直奔CoN ...

  4. Adaptive AUTOSAR 学习笔记 12 - 通信管理

    本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20-11 版本 AUTOSAR_EXP_PlatformDesign.pdf 缩写 CM:Communicatio ...

  5. AndroidStudio 插件总结

    工作中常用的插件备注如下: Alibaba Java Coding GuidelinesCheckStyle-IDEAAndroid Drawable PreviewGsonFormatTransla ...

  6. PTui又加全景图 佳田未来城 of 安阳

    今天我又拍了张360°无死角全景,因为我发现这种照片非常具有纪念意义,一个全景能胜过一千张照片. 我上一次的全景的地址:http://www.dushangself.site/dslab/?id=8 ...

  7. docker 部署mysql连接问题

    发现windows上有一个docker descktop(虽然不怎么好用), 安装之后准备直接用docker搭本地测试环境的基础设施(比如MySQL,Redis,MongoDB,ES啥的), 虽然比去 ...

  8. HTTP协议之:HTTP/1.1和HTTP/2

    目录 简介 HTTP/1.1 HTTP/2 传输模式对比 流优先级 缓冲区溢出处理 预测资源请求 压缩 总结 简介 HTTP的全称是Hypertext Transfer Protocol,是在1989 ...

  9. 记录一次java项目上线部署

    环境 操作系统:CentOS Linux release 8.0.1905 数据库:mariadb10.3.17 安装数据库 yum install -y mariadb mariadb-server ...

  10. C# prism 框架

    定义Region (RegionManager) 定义Region 的方式有两种,一个是在XMAL界面指定,另一种这是代码当中指定. RegionManager.RegionName(XMAL) Re ...