A. Emotional Flutter

直接将所有黑块平移到 \([1-k,0]\) 的区间即可,然后找有没有没被覆盖过的整点

注意特判 \(1-k\) 以及 \(0\) 的可行性,考场这里写挂成 \(10\) 分


B. Medium Counting

设 \(f[i][j][pos][c]\) 表示第 \(i\) 个到第 \(j\) 个字符串考虑从 \(pos\) 开始的后缀,且第 \(pos\) 位至少填 \(c\) 的方案数

\(f[i][j][pos][c]+=f[i][j][pos][c+1]\)

\(f[i][j][pos][c]+=f[i][k][pos+1][0] * f[k+1][j][pos][c+1]\)

代码实现
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn=55;
char c[maxn][maxn];
int a[maxn][maxn],len,n,f[maxn][maxn][maxn][30];
const int mod=990804011;
int dfs(int l,int r,int pos,int c){
if(l>r)return 1;
if(pos==len+1)return l==r;
if(c>26)return 0;
if(~f[l][r][pos][c])return f[l][r][pos][c];
int ans=0;
ans+=dfs(l,r,pos,c+1);
for(int i=l;i<=r;i++){
// if(!(a[i][pos]==c||(a[i][pos]==27&&c)))break;
if(a[i][pos]!=c&&!(a[i][pos]==27&&c))break;
ans+=dfs(l,i,pos+1,0)*dfs(i+1,r,pos,c+1)%mod;
ans%=mod;
}
f[l][r][pos][c]=ans;
return ans;
}
signed main(){
memset(f,-1,sizeof f);
cin>>n;
for(int i=1;i<=n;i++){
scanf("%s",c[i]+1);
int l=strlen(c[i]+1);
len=max(len,l);
for(int j=1;j<=l;j++){
if(c[i][j]!='?')a[i][j]=c[i][j]-'a'+1;
else a[i][j]=27;
}
}
cout<<dfs(1,n,1,0);
return 0;
}

C. Huge Counting

由于只有 \(f(1,1,……,1)\) 有贡献,所以相当于是每个点的值是走到这个点的方案数

是多重集排列:

\[\frac{(\sum x_i)!}{\prod x_i!}
\]

然而答案只问奇偶,所以只要统计分子分母 \(2\) 的因子数是否相等即可

转化成下面的式子:

\[\sum_{w=2^i} (\frac{\sum x_i}{w}-\sum \frac{x_i}{w})
\]

发现 \(x\) 每一位如果有进位一定在相减时产生差值

所以约束条件就是所有 \(x\) 每一位最多一个为 \(1\),数位 \(dp\) 即可

数位 \(dp\) 的结果是形如小于等于 \(lim_i\) 的方案数,发现还有下边界,容斥即可

代码实现
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=990804011;
const int up=50;
const int maxn=105,maxm=1005;
int f[maxn][maxm],ans,n,l[maxn],r[maxn],all,lim[maxn],t;
bool flag;
int dp(){
memset(f,0,sizeof f);
all=(1<<n)-1;
f[up][all]=1;
// if(!flag){
// for(int i=1;i<=n;i++)cout<<lim[i]<<" ";
// cout<<endl<<endl;
// }
for(int i=up;i>=1;i--){
for(int S=0;S<=all;S++){
if(f[i][S]){
// if(!flag)cout<<i<<" "<<S<<" "<<f[i][S]<<endl;
int T=0;
// for(int j=0;j<n;j++){
// if(S>>j&1 && !(limit[j+1]>>i-1&1))
// } for(int j=1;j<=n;j++){
if( ((1<<(j-1))&S) && (!((1ll<<(i-1))&lim[j])) ){
T|=(1<<(j-1));
}
}
f[i-1][T]=(f[i-1][T]+f[i][S])%mod;
// if(!flag)cout<<"ppp "<<T<<endl;
for(int j=1;j<=n;j++){
if( (1<<(j-1))&S && (1ll<<(i-1))&lim[j] || (!((1<<(j-1))&S)) ){
//int TT=T&((-1)^1<<(j-1)) | (((1<<(j-1))&S && (1ll<<(i-1))&lim[j])?1<<(j-1):0);
int TT;
if((1<<(j-1))&S)TT=T|(1<<(j-1));
else TT=T&((-1)^1<<(j-1));
f[i-1][TT]=(f[i-1][TT]+f[i][S])%mod;
}
}
}
}
}
flag=true;
int res=0;
for(int i=0;i<=all;i++)res=(res+f[0][i])%mod;
return res;
}
void rc(int pos,int op){
if(pos==n+1){
// cout<<"hhh "<<dp()<<endl;
ans=(ans+dp()*op+mod)%mod;
return ;
}
lim[pos]=r[pos];
rc(pos+1,op);
if(l[pos]>=1){
lim[pos]=l[pos]-1;
rc(pos+1,-op);
}
return ;
}
signed main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n;i++){
cin>>l[i]>>r[i];
l[i]--;
r[i]--;
}
ans=0;
rc(1,1);
cout<<ans<<endl;
}
return 0;
}

D. 字符消除2

容易发现可行循环长度是 \(kmp\) 一直取 \(nxt\) 的结果

那么构造 \(01\) 串的时候,如果 \(nxt[nxt[i]] * 2>nxt[i]\),直接把不重复的后缀复制过去即可

否则整个复制后中间还有空隙,按照贪心的思想全填 \(0\) 最优,但是可能会出现更多的循环节,那么暴力 \(kmp\) 这一区间的 \(01\) 串,如果有不满足的位置,把中间部分最后一个 \(0\) 改成 \(1\),这样一定破坏了原来多出来的匹配部分而满足条件

代码实现
#include<bits/stdc++.h>
using namespace std;
const int maxn=2e5+5;
char a[maxn];
int nxt[maxn],nxt1[maxn],t,n,cnt,p[maxn];
bool ans[maxn];
void kmp(){
memset(nxt,0,sizeof nxt);
for(int i=2,j=0;i<=n;i++){
while(j&&a[i]!=a[j+1])j=nxt[j];
if(a[i]==a[j+1])j++;
nxt[i]=j;
}
cnt=0;
p[++cnt]=n;
int x=nxt[n];
while(x){
p[++cnt]=x;
x=nxt[x];
}
return ;
}
void kmp1(int n){
memset(nxt1,0,sizeof nxt1);
for(int i=2,j=0;i<=n;i++){
while(j&&ans[i]!=ans[j+1])j=nxt1[j];
if(ans[i]==ans[j+1])j++;
nxt1[i]=j;
}
return ;
}
int main(){
cin>>t;
while(t--){
memset(ans,0,sizeof ans);
scanf("%s",a+1);
n=strlen(a+1);
kmp();
reverse(p+1,p+cnt+1);
// for(int i=1;i<=cnt;i++)cout<<p[i]<<" ";
// cout<<endl;
if(p[1]>1)ans[p[1]]=1;
for(int i=2;i<=cnt;i++){
if(p[i-1]*2>=p[i]){
int len=p[i]-p[i-1];
for(int j=p[i];j>=p[i-1]+1;j--)ans[j]=ans[j-len];
}
else{
int len=p[i]-p[i-1];
for(int j=p[i];j>=p[i]-p[i-1]+1;j--)ans[j]=ans[j-len];
kmp1(p[i]);
// for(int j=1;j<=n;j++)cout<<ans[j];
// cout<<endl;
for(int j=1;j<=i;j++){
// cout<<nxt1[j]<<" ";
if(nxt1[p[j]]!=nxt[p[j]]){
ans[p[i]-p[i-1]]=1;
break;
}
}
// cout<<endl;
}
}
for(int i=1;i<=n;i++)cout<<ans[i];
cout<<endl;
}
return 0;
}

noip模拟44的更多相关文章

  1. noip模拟44[我想我以后会碰见计数题就溜走的]

    noip模拟44 solutions 这一场抱零的也忒多了,我也只有45pts 据说好像是把几套题里面最难的收拾出来让我们考得 好惨烈啊,这次的考试我只有第一题骗了40pts,其他都抱零了 T1 Em ...

  2. Noip模拟44 2021.8.19

    比较惊人的排行榜 更不用说爆零的人数了,为什么联赛会这么难!!害怕了 还要再努力鸭 T1 Emotional Flutter 考场上没切掉的神仙题 考率如何贪心,我们把黑色的条延长$s$,白色的缩短$ ...

  3. 2021.8.19考试总结[NOIP模拟44]

    T1 emotional flutter 把脚长合到黑条中. 每个黑条可以映射到统一区间,实际操作就是左右端点取模.长度大于$k$时显然不合法. 然后检查一遍区间内有没有不被黑条覆盖的点即可. 区间端 ...

  4. [考试总结]noip模拟44

    这个真的是一个 \(nb\) 题. 考试快要结束的时候,在机房中只能听到此起彼伏的撕吼. 啊---------- 然后人们预测这自己的得分. \(\color{red}{\huge{0}}\) \(\ ...

  5. NOIP模拟17.9.22

    NOIP模拟17.9.22 前进![问题描述]数轴的原点上有一只青蛙.青蛙要跳到数轴上≥

  6. NOIP 模拟4 T2

    本题属于二和一问题 子问题相互对称 考虑对于问题一:知a求b 那么根据b数组定义式 显然能发现问题在于如何求dis(最短路) 有很多算法可供选择 dijsktra,floyed,bfs/dfs,spf ...

  7. 2021.9.17考试总结[NOIP模拟55]

    有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...

  8. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  9. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

随机推荐

  1. 在Linearlayout中新增ScrollView支持滚动

    https://blog.csdn.net/wenzhi20102321/article/details/53491176 1.一般只需要在布局中加个ScrollView即可 2.如果布局中包含lis ...

  2. CTF之隐写总结

    目测要更很久,因为今年有一件非常重要的事要完成,希望一切顺利  All The Best.

  3. Java流程控制03——选择结构

    选择结构 if单语句结构 我们很多时候要去判断一个东西是否可行,然后我们才去执行,这样一个过程我们用if语句来表示 语法  if(布尔表达式){ //如果布尔表达式结果为true将执行的语句 } if ...

  4. PCE | 华中农大郭亮团队蛋白质组学揭示油菜内源氧化还原修饰介导盐胁迫响应

    蛋白质翻译后修饰(PTM)在控制植物生长发育以及逆境适应方面发挥着重要的作用.发生在半胱氨酸巯基的亚磺酰化修饰(R-SOH)是一种可逆的氧化修饰类型,可以通过与其他修饰形态形成二硫键的形式来保护蛋白不 ...

  5. 用AutoHotkey做汉字到Unicode字符串的转换

    要把汉字转换为搜的形式,也就是在汉字的Unicode Big Endian编码前面加"&#x",后面加分号.例如""字转换后为"搜" ...

  6. Git-05-文件删除与恢复

    删除文件 1 添加一个文件test.txt文件用于测试 2 删除文件,这样删除,工作区和版本库一致 也可以直接rm 然后在 git rm,git commit 这样也能保证工作区和版本库一致 恢复误删 ...

  7. MongoDB-03-分片集群

    分片集群(Sharding Cluster) 架构图 规划 10个实例:38017-38026 1 configserver:38018-38020 3台构成的复制集(1主两从,不支持arbiter) ...

  8. 痞子衡嵌入式:i.MXRT中不支持DQS的FlexSPI引脚组连接Flash下载与启动注意事项

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是i.MXRT中不支持DQS的FlexSPI引脚组连接Flash下载与启动注意事项. 最近痞子衡在支持一个印度客户,这个客户项目主芯片选择 ...

  9. 《手把手教你》系列技巧篇(二十)-java+ selenium自动化测试-元素定位大法之终卷(详细教程)

    1.简介 这篇文章主要是对前边的文章中的一些总结和拓展.本来是不打算写着一篇的,但是由于前后文章定位元素的时间有点长,怕大家忘记了,就在这里简单做一个总结和拓展. 2.Selenium八种定位方式 S ...

  10. java集成网站微信,微博,qq登录

    微信 WechatConfig.java package com.meeno.chemical.common.sdk.wechat.config; import org.springframework ...