考场

乍一看都不可做

T1 算了半天样例,一直算出来 \(\frac{81}{400}\),直接丢了

T1 推了推发现是求最长连续 \(0\) 的数量,那就是线段树合并加上《玫瑰花精》

T3 完全不会。甚至不知道该状压还是乱搞

先敲了 T1 T3 两个暴力和 T3 完全图+边权相同的部分分,8 点多开始写 T2。结果出奇的顺利,9,00 就过了样例和测速(测速时发现线段树节点数忘 \(\times4\) 了,担心 MLE,换成了 merge 时不新建点的写法)。拍上后决定手模一些小数据,结果第一个就挂了。。。发现答案要和前缀 \(0\) 数+后缀 \(0\) 数取 \(\max\),暴力也没考虑,9.30 加上并过了自己造的小数据。

回头看 T1,还是没有想法。先加了个记忆化,又用分数类输出了一下样例,发现是 \(\frac{11}5\)???一直i疑惑到 10.00。交了T1 T3,发现编译器只有 C++11 gcc 8.2.0 一个选项,担心 T2 被卡常。造了链、菊花、二叉树的满数据,都在 0.3s 跑完了,感觉很稳。

res

rk4 20+100+20

T1 在求 \(\sum w_i\) 时没有模,导致算分母逆元时爆 LL 了,挂 25pts

T3 有完全图但边权不相等情况,挂 10pts

rk1 肖鸣孜 45+100+40

Hunter

考察了对期望的线性性本质的理解

要求的是在第一个猎人之前死的期望猎人数 \(+1\),即 \(\text{E}(\sum_{i=2}^nA_i)+1\),等于 \(\sum_{i=2}^n\text{E}(A_i)+1\),而每个猎人在第一个猎人之前死的期望是 \(\frac{w_i}{w_1+w_i}\times1\)。

code
const int N = 1e5+5, mod = 998244353;
int n;
LL a[N]; LL ans; LL Pow(LL x,LL y=mod-2)
{ LL res=1; for(;y;y>>=1,x=x*x%mod)if(y&1)res=res*x%mod; return res; } signed main() {
read(n);
For(i,1,n) read(a[i]);
For(i,2,n) ans = (ans + a[i] * Pow(a[1]+a[i])) %mod;
write((ans+1)%mod);
return iocl();
}

Defence

线段树合并+线段树求最长连续 \(0\) 数

考场代码
const int N = 1e5+5;
int n,m,q;
vector<int> to[N]; int rt[N],pre[N],suf[N],ans[N]; #define ls(u) t[u].ch[0]
#define rs(u) t[u].ch[1]
#define mid ((l+r)>>1)
int ind;
struct Node { int l,r; int len() { return r-l-1; } };
bool operator < (Node x,Node y) { return x.len() < y.len(); }
struct Seg { int ch[2],ll,rr; Node mx; } t[N*4*18];
void up(int u) {
t[u].mx = max(t[ls(u)].mx,t[rs(u)].mx);
if( ls(u) && rs(u) ) ckmax(t[u].mx,Node{t[ls(u)].rr,t[rs(u)].ll});
t[u].ll = t[ ls(u)?ls(u):rs(u) ].ll, t[u].rr = t[ rs(u)?rs(u):ls(u) ].rr;
}
void insert(int &u,int l,int r,int p) {
if( !u ) u = ++ind;
if( l == r ) {
t[u].ll = t[u].rr = p, t[u].mx = {p,p};
return;
}
if( p <= mid ) insert(ls(u),l,mid,p);
else insert(rs(u),mid+1,r,p);
up(u);
}
int merge(int u,int v,int l,int r) {
if( !u || !v ) return u | v;
if( l == r ) return u;
ls(u) = merge(ls(u),ls(v),l,mid), rs(u) = merge(rs(u),rs(v),mid+1,r);
up(u); return u;
}
#undef ls
#undef rs
#undef mid void dfs(int u,int fa) {
for(int v : to[u]) if( v != fa ) {
dfs(v,u);
rt[u] = merge(rt[u],rt[v],0,m);
ckmin(pre[u],pre[v]), ckmax(suf[u],suf[v]);
}
if( suf[u] ) ans[u] = max(t[rt[u]].mx.len(),pre[u]-0-1+m-suf[u]-1);
else ans[u] = -1;
} signed main() {
// printf("%d\n",sizeof(t));
// return 0;
// freopen("b1.in","r",stdin);
// freopen("b1.out","w",stdout);
read(n,m,q); ++m;
For(i,1,n-1) {
int x,y; read(x,y);
to[x].pb(y), to[y].pb(x);
}
For(i,1,n) pre[i] = m, insert(rt[i],0,m,0), insert(rt[i],0,m,m);
while( q-- ) {
int x,y; read(x,y);
insert(rt[x],0,m,y);
ckmin(pre[x],y), ckmax(suf[x],y);
}
dfs(1,0);
For(i,1,n) write(ans[i]);
return iocl();
}

Connect

本质是要保留一条 \(1\) 到 \(n\) 的链,其他点与这条链只有一个交点,求删去边的最小权值和。

\(n\) 很小,考虑状压 DP。

设 \(f[s,i]\) 为当前考虑过的点集为 \(s\),链的结尾为 \(i\) 的保留,每次考虑添加一个点到链中或找一个联通块,使这个联通块中的点与这条链的交点为 \(i\)。具体看代码

code
const int N = 16;
int n,m;
int w[N][N]; int all,sum[1<<N],g[1<<N][N],f[1<<N][N]; signed main() {
read(n,m); all = (1<<(n--))-1;
For(i,1,m) {
int x,y,z; read(x,y,z); --x,--y;
w[x][y] = w[y][x] = z;
}
For(s,1,all) For(i,0,n) if( s & (1<<i) ) For(j,i+1,n) if( s & (1<<j) )
sum[s] += w[i][j]; // sum[s]: 集合s中内部连边的和
For(s,1,all) For(i,0,n) For(j,0,n) if( s & (1<<j) ) g[s][i] += w[i][j];
// g[s,i]: 集合s与点i连边的和
memset(f,0xcf,sizeof f);
f[1][0] = 0;
For(s,1,all) For(i,0,n) if( f[s][i] >= 0 ) {
For(j,0,n) if( !(s & (1<<j)) ) // 点j接到链上
ckmax(f[s|(1<<j)][j],f[s][i]+w[i][j]);
for(int ss = all^s, t = ss; t; t = (t-1)&ss) // 联通块t接到i上
ckmax(f[s|t][i],f[s][i]+g[t][i]+sum[t]);
}
write(sum[all]-f[all][n]);
return iocl();
}

20210808 Hunter,Defence,Connect的更多相关文章

  1. 8.8考试总结(NOIP模拟33)[Hunter·Defence·Connect]

    无法逃避的是自我,而无法挽回的是过去. 前言 还算可以,不过 T1 少 \(\bmod\) 了一下挂了 25pts,T2 没看清题面挂了 27pts. 下回注意吧.. T1 Hunter 解题思路 感 ...

  2. Connect() 2016 大会的主题 ---微软大法好

    文章首发于微信公众号"dotnet跨平台",欢迎关注,可以扫页面左面的二维码. 今年 Connect 大会的主题是 Big possibilities. Bold technolo ...

  3. “.Net 社区虚拟大会”(dotnetConf) 2016 Day 1 Keynote: Scott Hunter

    “.Net 社区虚拟大会”(dotnetConf) 2016 今天凌晨在Channel9 上召开,在Scott Hunter的30分钟的 Keynote上没有特别的亮点,所讲内容都是 微软“.Net社 ...

  4. IdentityServer4 使用OpenID Connect添加用户身份验证

    使用IdentityServer4 实现OpenID Connect服务端,添加用户身份验证.客户端调用,实现授权. IdentityServer4 目前已更新至1.0 版,在之前的文章中有所介绍.I ...

  5. 2003-Can't connect to mysql server on localhost (10061)

    mysql数据库出现2003-Can't connect to mysql server on localhost (10061)问题 解决办法:查看wampserver服务器是否启动,如果没有启动启 ...

  6. Error connecting to database [Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (13)]

    参照 http://stackoverflow.com/questions/4448467/cant-connect-to-local-mysql-server-through-socket-var- ...

  7. HTTP Method详细解读(`GET` `HEAD` `POST` `OPTIONS` `PUT` `DELETE` `TRACE` `CONNECT`)

    前言 HTTP Method的历史: HTTP 0.9 这个版本只有GET方法 HTTP 1.0 这个版本有GET HEAD POST这三个方法 HTTP 1.1 这个版本是当前版本,包含GET HE ...

  8. IdentityServer4 ASP.NET Core的OpenID Connect OAuth 2.0框架学习保护API

    IdentityServer4 ASP.NET Core的OpenID Connect OAuth 2.0框架学习之保护API. 使用IdentityServer4 来实现使用客户端凭据保护ASP.N ...

  9. Connect to the DSP on C6A8168/DM8168/DM8148 using CCS

    转自ti-wiki  这份wiki,我曾经就收藏过,但是没有加以重视,以至于绕了一大圈的ccs开发环境的配置,现在正式收藏于自己的博客中...总结良多啊 Connecting to DSP on C6 ...

随机推荐

  1. netty系列之:Event、Handler和Pipeline

    目录 简介 ChannelPipeline ChannelHandler ChannelHandlerContext ChannelHandler中的状态变量 异步Handler 总结 简介 上一节我 ...

  2. MIPS Pwn赛题学习

    MIPS Pwn writeup Mplogin 静态分析   mips pwn入门题. mips pwn查找gadget使用IDA mipsrop这个插件,兼容IDA 6.x和IDA 7.x,在ID ...

  3. rsa加密初探

    RSA加密算法初探 RSA加密算法是早期的非对称加密,公钥和私钥分离,公开公钥,通过确保私钥的安全来保证加密内容的安全.由麻省理工学院的罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi ...

  4. 阿里面试官:Android中binder机制的实现原理及过程?

    Binder 是 Android 系统中非常重要的组成部分.Android 系统中的许多功能建立在 Binder 机制之上.在这篇文章中,我们会对 Android 中的 Binder 在系统架构中的作 ...

  5. 遗传算法 TSP(Python代码)

    该代码是本人根据B站up主侯昶曦的代码所修改的. 原代码github地址:https://github.com/Houchangxi/heuristic-algorithm/blob/master/T ...

  6. spring-security oauth2.0简单集成

    github地址:https://github.com/intfish123/oauth.git 需要2个服务,一个认证授权服务,一个资源服务 认证授权服务为客户端颁发令牌,资源服务用于客户端获取用户 ...

  7. Echarts 展示两条动态数据曲线

    利用Echarts 展示两条动态数据曲线,每1秒刷新一下数据,在echart官网例子基础上修改,修改了仿真数据的生成方式.生成数量,曲线数量,最总效果图如下: 详细代码如下: 遇到的主要问题点, 1, ...

  8. VLAN-2 配置Trunk接口

    一.实验拓扑图 二.实验编址 三.实验步骤 1.给对应的PC设置对应的IP和掩码还有接口,以及根据需要划分不同的vlan区域,再用文本标记出不同部门. 2.启动设备(全选) 3.首先用ping命令检查 ...

  9. javascript,html,正则表达式,邮箱密码验证

    <!DOCTYPE html> <html>     <head>         <meta charset="utf-8">   ...

  10. Mybatis框架及原理实例分析

    摘要 本篇文章只是个人阅读mybatis源码总结的经验或者个人理解mybatis的基本轮廓,作为抛砖引玉的功能,希望对你有帮助,如果需要深入了解细节还需亲自去阅读源码. mybatis基本架构 myb ...