线程池之工作队列

ArrayBlockingQueue

采用数组来实现,并采用可重入锁ReentrantLock来做并发控制,无论是添加还是读取,都先要获得锁才能进行操作 可看出进行读写操作都使用了ReentrantLock,ArrayBlockingQueue需要为其指定容量

    public boolean offer(E e) {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == items.length)
return false;
else {
enqueue(e);
return true;
}
} finally {
lock.unlock();
}
} public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
enqueue(e);
} finally {
lock.unlock();
}
}

SynchronousQueue

由于SynchronousQueue源码比较复杂,里面大量的Cas操作,SynchronousQueue没有容器,所以里面是装不了任务的,当一个生产者线程生产一个任务的 时候,如果没有对应的消费者消费,那么该生产者会一直阻塞,知道有消费者消费为止。
图示:
 如下代码,如果我们将消费者线程注释掉执行,那么生产者哪里将会一直阻塞

package thread.customthreadpool;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor; /**
* 测试SynchronousQueue
*/
public class SynchronousQueueTest { private static final SynchronousQueue<String> synchronousQueue = new SynchronousQueue<>(); private static final ExecutorService service = Executors.newCachedThreadPool(); public static void main(String[] args) {
/**
* Provider
*/
service.submit(() -> {
try {
synchronousQueue.put("liu");
}catch (Exception e){
e.printStackTrace();
}
System.out.println("Consumer finished spending");
}); /**
* Consumer
*/
service.submit(() ->{
try {
synchronousQueue.take();
}catch (Exception e){
e.printStackTrace();
}
System.out.println("take over");
});
}
}

LinkedBlockingDeque

LinkedBlockingDeque是一个双向队列,底层使用单链表实现,任何一段都可进行元素的读写操作,在初始化LinkedBlockingDeque的时候, 我们可以指定容量,也可不指定,如果不指定,则容量为Integer.MAX_VALUE,

注:Deque是双端队列,而Queue是单端队列,双端意思是两端都可以进行读写操作,而单端则只能从一端进,一端出(FIFO)
public LinkedBlockingDeque() {
this(Integer.MAX_VALUE);
}
package thread.customthreadpool;
import java.util.concurrent.LinkedBlockingDeque;
public class LinkedBlockingDequeTest { private static final LinkedBlockingDeque<Integer> deque = new LinkedBlockingDeque<>(); public static void main(String[] args) throws InterruptedException {
deque.put(1);
deque.put(2);
deque.put(3);
deque.put(4);
deque.put(5);
System.out.println(deque);
System.out.println("deque size "+deque.size());
deque.take();
deque.take();
deque.take();
deque.take();
deque.take();
System.out.println(deque);
System.out.println("deque size "+deque.size());
}
}
 

LinkedBlockingQueue

底层基于单向连表实现,是一个单向队列,具有先进先出(FIFO)特点,使用了ReentrantLock来做并发控制,读写操作都上锁

private final ReentrantLock putLock = new ReentrantLock();
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
while (count.get() == capacity) {
notFull.await();
}
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
}
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}

DelayDeque

DelayDeque是一个无界队列,添加进DelayDeque的元素会经过compareTo方法计算,然后按照时间 进行排序,排在队头的元素是最早到期的,越往后到期时间越长,DelayDeque只能接受Delayed接口类型 如图所示,队列里的元素并不是按照先进先出的规则,而是按照过期时间

示例
package thread.customthreadpool.delayDeque;

import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit; public class MyDelayed implements Delayed { private final String taskName ;
private final long nowTime = System.currentTimeMillis();
private final long expireTime ; public MyDelayed(String taskName,long expireTime) {
this.taskName = taskName;
this.expireTime = expireTime;
} @Override
public long getDelay(TimeUnit unit) {
return unit.convert((nowTime+expireTime) - System.currentTimeMillis(),TimeUnit.MILLISECONDS);
} @Override
public int compareTo(Delayed o) {
MyDelayed myDelayed = (MyDelayed) o;
return (int) (this.getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));
} @Override
public String toString() {
return "MyDelayed{" +
"taskName='" + taskName + '\'' +
", nowTime=" + nowTime +
", expireTime=" + expireTime +
'}';
}
}
package thread.customthreadpool.delayDeque;

import java.util.concurrent.*;

public class MyDelayQueue {

    private static final DelayQueue<MyDelayed> delayQueue = new DelayQueue<>();

    private static final ExecutorService service = Executors.newCachedThreadPool();

    public static void main(String[] args) throws InterruptedException {
service.submit(() -> {
delayQueue.put(new MyDelayed("A-Task",5000));
delayQueue.put(new MyDelayed("B-Task",4000));
delayQueue.put(new MyDelayed("C-Task",3000));
delayQueue.put(new MyDelayed("D-Task",2000));
delayQueue.put(new MyDelayed("E-Task",1000));
});
while (true){
System.out.println(delayQueue.take());
}
}
}
 
result

应用场景

1.美团外卖订单:当我们下单后没付款 ,30分钟后将自动取消订单
2.缓存,对于某些任务,需要在特定的时间清理;
and so on

LinkedTransferQueue

当消费线程从队列中取元素时,如果队列为空,那么生成一个为null的节点,消费者线程就一直等待,此时如果生产者线程发现队列中有一个null节点, 它就不入队了,而是将元素填充到这个null节点并唤醒消费者线程,然后消费者线程取走元素。
LinkedTransferQueue是 SynchronousQueue 和 LinkedBlockingQueue 的整合,性能比较高,因为没有锁操作, SynchronousQueue不能存储元素,而LinkedTransferQueue能存储元素,

PriorityBlockingQueue

PriorityBlockingQueue是一个无界的阻塞队列,同时是一个支持优先级的队列,读写操作都是基于ReentrantLock, 内部使用堆算法保证每次出队都是优先级最高的元素

public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
E result;
try {
while ( (result = dequeue()) == null)
notEmpty.await();
} finally {
lock.unlock();
}
return result;
}

java线程池-工作队列workQueue的更多相关文章

  1. Java 线程池框架核心代码分析--转

    原文地址:http://www.codeceo.com/article/java-thread-pool-kernal.html 前言 多线程编程中,为每个任务分配一个线程是不现实的,线程创建的开销和 ...

  2. Java线程池使用说明

    Java线程池使用说明 转自:http://blog.csdn.net/sd0902/article/details/8395677 一简介 线程的使用在java中占有极其重要的地位,在jdk1.4极 ...

  3. Java线程池的几种实现 及 常见问题讲解

    工作中,经常会涉及到线程.比如有些任务,经常会交与线程去异步执行.抑或服务端程序为每个请求单独建立一个线程处理任务.线程之外的,比如我们用的数据库连接.这些创建销毁或者打开关闭的操作,非常影响系统性能 ...

  4. Java线程池的原理及几类线程池的介绍

    刚刚研究了一下线程池,如果有不足之处,请大家不吝赐教,大家共同学习.共同交流. 在什么情况下使用线程池? 单个任务处理的时间比较短 将需处理的任务的数量大 使用线程池的好处: 减少在创建和销毁线程上所 ...

  5. [转 ]-- Java线程池使用说明

    Java线程池使用说明 原文地址:http://blog.csdn.net/sd0902/article/details/8395677 一简介 线程的使用在java中占有极其重要的地位,在jdk1. ...

  6. Java 线程池框架核心代码分析

    前言 多线程编程中,为每个任务分配一个线程是不现实的,线程创建的开销和资源消耗都是很高的.线程池应运而生,成为我们管理线程的利器.Java 通过Executor接口,提供了一种标准的方法将任务的提交过 ...

  7. java线程池的使用与详解

    java线程池的使用与详解 [转载]本文转载自两篇博文:  1.Java并发编程:线程池的使用:http://www.cnblogs.com/dolphin0520/p/3932921.html   ...

  8. java 线程池 并行 执行

    https://github.com/donaldlee2008/JerryMultiThread/blob/master/src/com/jerry/threadpool/ThreadPoolTes ...

  9. Java线程池带图详解

    线程池作为Java中一个重要的知识点,看了很多文章,在此以Java自带的线程池为例,记录分析一下.本文参考了Java并发编程:线程池的使用.Java线程池---addWorker方法解析.线程池.Th ...

随机推荐

  1. Resnet网络详细结构(针对Cifar10)

    Resnet网络详细结构(针对Cifar10) 结构 具体结构(Pytorch) conv1 (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, ...

  2. Salesforce Integration 概览(六) UI Update Based on Data Changes(UI自动更新基于数据变更)

    Salesforce用户界面必须由于Salesforce数据的更改而自动更新.这个场景其实在我所经历的项目中用到的不是特别多,因为客户可能直接点击刷新按钮就直接看到了最新的数据,而不是那种一直不刷新然 ...

  3. [TensorFlow2.0]-张量与常用函数

    本人人工智能初学者,现在在学习TensorFlow2.0,对一些学习内容做一下笔记.笔记中,有些内容理解可能较为肤浅.有偏差等,各位在阅读时如有发现问题,请评论或者邮箱(右侧边栏有邮箱地址)提醒. 若 ...

  4. 在STM32F401上移植uC/OS的一个小问题 [原创]

    STM32F401xx是意法半导体新推出的Cortex-M4内核的MCU,相较于已经非常流行的STM32F407xx和STM32F427xx等相同内核的MCU而言,其特点是功耗仅为128uA/MHz, ...

  5. Linux命令(六)之防火墙iptables的相关操作以及端口的开放

    .personSunflowerP { background: rgba(51, 153, 0, 0.66); border-bottom: 1px solid rgba(0, 102, 0, 1); ...

  6. .NetCore+OpenSSL实现Https

    前言 最近,有时间研究了一下HTTPS安全通信的原理,感兴趣的同学可以看下上一篇博文深入理解Https如何保证通信安全 ,随即联想到近段时间开发的.NetCore项目,.NetCore API应用程序 ...

  7. dubbo学习实践(5)之Dubbo-Admin元数据中心配置(zookeeper&Redis&Consul)

    1.Dubbo2.7.8元数据中心配置zookeeper版 前面文章已经写到了dubbo-admin管理平台的docker版配置及dubbo服务注册与调用,这篇文章记录dubbo元数据中心配置 翻开d ...

  8. Using Evernote with Wine on Mint

    Install Evernote Install Evernote in Wine: wine Evernote_xxx.exe; Backup Evernote Database File Loca ...

  9. 记面试的一道JS题

    给一个数组arr=[1,2,3,4,5],索引第二位插入'z',设计一个函数change,调用change(arr, 2, 'z')返回一个新数组[1,2,'z',3,4,5] 我想了两种办法: 第一 ...

  10. 常见web中间件漏洞(一)IIS漏洞

    web中间件作为web安全的重要一块,经常会有人问balabala,虽然有很多已经人尽皆知并且基本不再构成威胁了,但是还是有必要说一下,了解历史,了解我们从哪里来 鉴于内容实在是太多,本来打算一起写完 ...