前言

由于本人比较拉所以看起来很啰嗦,将就看就好。

题目大意

\(n\)种包,每个包里面有一大一小两个球,选小球的代价是\(1\),大球的代价是\(2\),可以都不选,若一次性买两个包,则可以优惠\(1\)元。设总代价为\(k\),求对于\(k\in[1,m]\),选的方案数。

解题思路

设二元生成函数\([z^nt^k]\)表示选\(n\)种包,代价为\(k\)的方案数。

根据题意,答案为

\[[z^nt^k]\frac1{1-[z(1+t+t^2)+z^2(t+2t^2+t^3)]}
\]

尝试裂项化为\(\sum\frac1{1-az}\)形式,以便消去一个元\([z^n]\)。我们提出分母,将其因式分解,设:

\[1-z(1+t+t^2)-z^2(t+2t^2+t^3)=(1-az)(1-bz)
\]

不难得到\(a=(1+t)^2,b=-t\),根据

\[\frac1{(1-az)(1-bz)}=\frac 1 {a-b}(\frac{a}{1-az}-\frac{b}{1-bz})
\]

裂项得到原式等于

\[[z^nt^k]\frac1{1+3t+t^2}[\frac{(1+t)^2}{1-(1+t)^2z}+\frac t {1 + tz}]
\]

大家都知道\([z^n]\frac1{1-az}=a^n\),所以可以愉快地扔掉\([z^n]\)了,化为

\[[t^k]\frac{(1+t)^{2n+2}+(-1)^nt^{n+1}}{1+3t+t^2}
\]

不如先化掉分子吧

\[[t^k]\frac{\binom {2n+2}{k}+(-1)^n[k=n+1]}{1+3t+t^2}
\]

\[F(t)=\binom {2n+2}{k}+(-1)^n[k=n+1]
\]

则所求变为

\[G(t)=\frac{F(t)}{1+3t+t^2}
\]

得到

\[(1+3t+t^2)G(t)=F(t)
\]

拆开

\[G(t)=F(t)-3tG(t)-t^2G(t)
\]

\[g_k=f_k-3g_{k-1}-g_{k-2}
\]

于是可以\(O(m)\)递推做了,此题就做完了。

后记

奇怪的是出题人的\(\sum m\)只出到了\(3e4\),所以盲猜此题出题人想到的是较劣的做法。

以及居然行末要有空格才能过,HDU没救了

Taught by GuidingStar

HDU ACM 8.13 T2 的 O(m)做法的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  3. hdu acm 2082 找单词

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

  5. HDU ACM 1325 / POJ 1308 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU ACM 1134 Game of Connections / 1130 How Many Trees?(卡特兰数)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=1134 [解题背景]这题不会做,自己推公式推了一段时间,将n=3和n=4的情况列出来了,只发现第n项与 ...

  7. HDU ACM Eight

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 解题背景: 看到八数码问题,没有任何的想法,偶然在翻看以前做的题的时候发现解决过类似的一道题,不 ...

  8. HDU ACM 题目分类

    模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 104 ...

  9. HDU ACM 1690 Bus System (SPFA)

    Bus System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. mybatis-扩展

    分页插件 使用pageHelper参考官方https://github.com/pagehelper/Mybatis-PageHelper/blob/master/wikis/zh/HowToUse. ...

  2. Dubbo消费者异步调用Future使用

    Dubbo的四大组件工作原理图,其中消费者调用提供者采用的是同步调用方式.消费者对于提供者的调用,也可以采用异步方式进行调用.异步调用一般应用于提供者提供的是耗时性IO服务 一.Future异步执行原 ...

  3. shell条件测试语句实例-测试apache是否开启

    终于理解了shell条件测试语句"!="和"-n"的用法区别,于是有了如下的shell脚本,做为练习. 第一种方法:测试apache是否开启?字符串测试 #!/ ...

  4. 【Services】【Web】【tomcat】配置tomcat支持https传输

    1. 基础: 1.1. 描述:内网的tomcat接到外网nginx转发过来的请求之后需要和外网的客户端进行通讯,为了保证通讯内容的安装,使用tomcat使用https协议. 1.2. 链接:http: ...

  5. XML解析器

    1.非验证解析器 检查文档格式是否良好,如用浏览器打开XML文档时,浏览器会进行检查,即格式是否符合XML(可拓展标记语言)基本概念. 2.验证解析器 使用DTD(Document Type Defi ...

  6. PHP之CURL实现含有验证码的模拟登录

    博主最近在为学校社团写一个模拟登录教务系统来进行成绩查询的功能,语言当然是使用PHP啦,原理是通过php数据传输神器---curl扩展,向学校教务系统发送请求,通过模拟登录,获取指定url下的内容. ...

  7. java多线程并发编程中的锁

    synchronized: https://www.cnblogs.com/dolphin0520/p/3923737.html Lock:https://www.cnblogs.com/dolphi ...

  8. java 图形化小工具Abstract Window Toolit 菜单项

    AWT 中的菜单由如下几个类组合而成 MenuBar: 菜单条,菜单的容器. Menu: 菜单组件,菜单项的容器,它也是Menultem的子类,所以可作为菜单项使用. PopupMenu: 上下文菜单 ...

  9. java 集合Collections 工具类:排序,查找替换。Set、List、Map 的of方法创建不可变集合

    Collections 工具类 Java 提供1个操作 Set List Map 等集合的工具类 Collections ,该工具类里提供了大量方法对集合元素进行排序.查询和修改等操作,还提供了将集合 ...

  10. 在mysql5.8中用json_extract函数解析json

    背景:某个字段的数据中是JSON,需要提取其中的卡号部分,如: {"objType":"WARE","orderId":6771254073 ...