前言

由于本人比较拉所以看起来很啰嗦,将就看就好。

题目大意

\(n\)种包,每个包里面有一大一小两个球,选小球的代价是\(1\),大球的代价是\(2\),可以都不选,若一次性买两个包,则可以优惠\(1\)元。设总代价为\(k\),求对于\(k\in[1,m]\),选的方案数。

解题思路

设二元生成函数\([z^nt^k]\)表示选\(n\)种包,代价为\(k\)的方案数。

根据题意,答案为

\[[z^nt^k]\frac1{1-[z(1+t+t^2)+z^2(t+2t^2+t^3)]}
\]

尝试裂项化为\(\sum\frac1{1-az}\)形式,以便消去一个元\([z^n]\)。我们提出分母,将其因式分解,设:

\[1-z(1+t+t^2)-z^2(t+2t^2+t^3)=(1-az)(1-bz)
\]

不难得到\(a=(1+t)^2,b=-t\),根据

\[\frac1{(1-az)(1-bz)}=\frac 1 {a-b}(\frac{a}{1-az}-\frac{b}{1-bz})
\]

裂项得到原式等于

\[[z^nt^k]\frac1{1+3t+t^2}[\frac{(1+t)^2}{1-(1+t)^2z}+\frac t {1 + tz}]
\]

大家都知道\([z^n]\frac1{1-az}=a^n\),所以可以愉快地扔掉\([z^n]\)了,化为

\[[t^k]\frac{(1+t)^{2n+2}+(-1)^nt^{n+1}}{1+3t+t^2}
\]

不如先化掉分子吧

\[[t^k]\frac{\binom {2n+2}{k}+(-1)^n[k=n+1]}{1+3t+t^2}
\]

\[F(t)=\binom {2n+2}{k}+(-1)^n[k=n+1]
\]

则所求变为

\[G(t)=\frac{F(t)}{1+3t+t^2}
\]

得到

\[(1+3t+t^2)G(t)=F(t)
\]

拆开

\[G(t)=F(t)-3tG(t)-t^2G(t)
\]

\[g_k=f_k-3g_{k-1}-g_{k-2}
\]

于是可以\(O(m)\)递推做了,此题就做完了。

后记

奇怪的是出题人的\(\sum m\)只出到了\(3e4\),所以盲猜此题出题人想到的是较劣的做法。

以及居然行末要有空格才能过,HDU没救了

Taught by GuidingStar

HDU ACM 8.13 T2 的 O(m)做法的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  3. hdu acm 2082 找单词

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

  5. HDU ACM 1325 / POJ 1308 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU ACM 1134 Game of Connections / 1130 How Many Trees?(卡特兰数)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=1134 [解题背景]这题不会做,自己推公式推了一段时间,将n=3和n=4的情况列出来了,只发现第n项与 ...

  7. HDU ACM Eight

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 解题背景: 看到八数码问题,没有任何的想法,偶然在翻看以前做的题的时候发现解决过类似的一道题,不 ...

  8. HDU ACM 题目分类

    模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 104 ...

  9. HDU ACM 1690 Bus System (SPFA)

    Bus System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. ORACEL 创建DIRECTORY

    oracle要直接对文件进行读写必须先创建一个DIRECTORY. 语法如下: CREATE DIRECTORY UTL_FILE_DIR AS '/home/oracle/oradir'; 可以通过 ...

  2. linux 配置本地yum

    1.挂载光盘 #挂载光盘 mount /dev/cdrom /mnt/cdrom 2.修改yum.conf, 运行 vi /etc/yum.conf,文件替换成如下内容 [main] cachedir ...

  3. NSURLSession下载文件-代理

    - 3.1 涉及知识点(1)创建NSURLSession对象,设置代理(默认配置) ```objc //1.创建NSURLSession,并设置代理 /* 第一个参数:session对象的全局配置设置 ...

  4. 【Java】【IDE】【Jetbrain Idea】Intellij IDEA 快捷键整理

    [常规] Ctrl+Shift + Enter,语句完成 "!",否定完成,输入表达式时按 "!"键 Ctrl+E,最近的文件 Ctrl+Shift+E,最近更 ...

  5. Leetcode 78题-子集

    LeetCode 78 网上已经又很多解这题的博客了,在这只是我自己的解题思路和自己的代码: 先贴上原题: 我的思路: 我做题的喜欢在本子或别处做写几个示例,以此来总结规律:下图就是我从空数组到数组长 ...

  6. 3.Vue.js-目录结构

    Vue.js 目录结构 上一章节中我们使用了 npm 安装项目,我们在 IDE(Eclipse.Atom等) 中打开该目录,结构如下所示: 目录解析 目录/文件 说明 build 项目构建(webpa ...

  7. 【C/C++】n皇后问题/全排列/递归/回溯/算法笔记4.3

    按常规,先说一下我自己的理解. 递归中的return常用来作为递归终止的条件,但是对于返回数值的情况,要搞明白它是怎么返回的.递归的方式就是自己调用自己,而在有返回值的函数中,上一层的函数还没执行完就 ...

  8. [BUUCTF]PWN——hitcontraining_uaf

    [BUUCTF]--hitcontraining_uaf 附件 步骤: 例行检查,32位,开启了nx保护 试运行一下程序,非常常见的创建堆块的菜单 32位ida载入分析,shift+f12查看程序里的 ...

  9. OpenWrt之关闭IPv6

    目录 OpenWrt之关闭IPv6 1.前言 2.WAN口设置 3.LAN口设置 4.保存并应用 5.防火墙设置 6.DHCP/DNS设置 1)SSH连接路由器 2)输入第一条命令,按回车执行 3)输 ...

  10. 小迪安全 Web安全 基础入门 - 第二天 - Web应用&架构搭建&漏洞&HTTP数据包&代理服务器

    一.网站搭建 1.域名.是由一串用点分隔的字符组成的互联网上某一台计算机或计算机组的名称,用于在数据传输时标识计算机的电子方位.域名可以说是一个IP地址的代称,目的是为了便于记忆后者. 2.子域名.在 ...