本文是网络资料整理或部分转载或部分原创,参考文章如下:

https://www.cnblogs.com/JVxie/p/4854719.html

http://blog.csdn.net/ywcpig/article/details/52336496

https://baike.baidu.com/item/最近公共祖先/8918834?fr=aladdin

最近公共祖先,简称LCA(Lowest Common Ancestor):

所谓LCA是当给定一个有根树T时,对于任意两个结点u、v,找到一个离根最远的结点x,使得x同时是u和v的祖先,x 便是u、v的最近公共祖先。

再通俗地解释一下:在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点。换句话说,就是两个点在这棵树上距离最近的公共祖先节点。所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。LCA还可以将自己视为祖先节点。

本文为了简化,多使用二叉树来讨论。

举个例子,如针对下图所示的一棵普通的二叉树来讲:

结点3和结点4的最近公共祖先是结点2,即LCA(3,4)=2 。

需要注意到当两个结点在同一棵子树上的情况。

如结点3和结点2的最近公共祖先为2,即 LCA(3,2)=2

同理:LCA(5,6)=4LCA(6,10)=1

明确了题意,咱们便来试着解决这个问题。直观的做法,可能是针对是否为二叉查找树分情况讨论,这也是一般人最先想到的思路。除此之外,还有Tarjan算法、倍增算法、以及转换为RMQ问题(求某段区间的极值)。

我们先来讲讲暴力解法

如果是二叉查找树,如下图:

那么从树根开始:

  • 如果当前结点t 大于结点u、v,说明u、v都在t 的左侧,所以它们的共同祖先必定在t 的左子树中,故从t 的左子树中继续查找;
  • 如果当前结点t 小于结点u、v,说明u、v都在t 的右侧,所以它们的共同祖先必定在t 的右子树中,故从t 的右子树中继续查找;
  • 如果当前结点t 满足 u <t < v,说明u和v分居在t 的两侧,故当前结点t 即为最近公共祖先;
  • 而如果u是v的祖先,那么u就是最近公共祖先,同理,如果v是u的祖先,那么v就是最近公共祖先。

伪代码如下所示:

int query(Node t, Node u, Node v) {    
    int left = u.value;    
    int right = v.value;    
 
   //二叉查找树内,如果左结点大于右结点,就交换。不知道为什么要交换  
    if (left > right) {    
        int temp = left;    
        left = right;    
        right = temp;    
    }    
 
    while (true) {    
        //如果t小于u、v,往t的右子树中查找  
        if (t.value < left) {    
            t = t.right;    
        //如果t大于u、v,往t的左子树中查找  
        } else if (t.value > right) {    
            t = t.left;    
        } else {    
            return t.value;    
        }    
    }    
}

如果不是二叉查找树,对于每个询问,就暴力遍历所有的点,时间复杂度为O(n*q),q是询问的次数。很明显,n和q一般不会很小。此处略......

然后我们再来讲一讲如何用Tarjan算法离线解决LCA:

离线算法就是指统一输入后再统一输出,而不是边输入边实时输出。Tarjan算法的复杂度为O(N+Q),Q为询问的次数。相当于一次性批量处理,一开始就知道了全部查询,只待询问。

下面详细介绍一下Tarjan算法的基本思路:看不明白没关系,我们后面会模拟的。

  1.任选一个点为根节点,从根节点开始。

  2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。

  3.若是v还有子节点,返回第2步,否则下一步。

  4.合并v到u上。

  5.寻找与当前点u有询问关系的点v。

6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。

遍历的话需要用到dfs来遍历,至于合并,最优化的方式就是利用并查集来合并两个节点。

下面上伪代码: 

我们先来直接模拟一下用Tarjan来解决LCA,然后再总结。

 

假设我们有一组数据 9个节点 8条边 联通情况如下:

1--2,1--3,2--4,2--5,3--6,5--7,5--8,7--9 即下图所示的树

设我们要查找最近公共祖先的点为9和8,4和6,7和5,5和3;

设f[]数组为并查集的父亲节点数组,初始化f[i]=i,vis[]数组为是否访问过的数组,初始为0;

下面开始模拟过程

 取1为根节点,往下搜索发现有两个儿子2和3;

 先搜2,发现2有两个儿子4和5,先搜索4,发现4没有子节点,则寻找与其有关系的点;

 发现6与4有关系,但是vis[6]=false,即6还没被搜过,所以不操作;

 发现没有和4有询问关系的点了,返回此前一次搜索,更新vis[4]=true,表示4已经被搜完,再更新f[4]=2,表示4被合并到2,如下图: 

    

 继续搜5,发现5有两个儿子7和8;

 先搜7,发现7有一个子节点9,搜索9,发现没有子节点,寻找与其有关系的点;

发现8和9有关系,但是vis[8]=false,即8没被搜到过,所以不操作;

 发现没有和9有询问关系的点了,返回此前一次搜索,更新vis[9]=true;

 表示9已经被搜完,更新f[9]=7;

回到7,发现7没有没被搜过的子节点了,寻找与其有关系的点;

 发现5和7有关系,但是vis[5]=false,所以不操作;

 发现没有和7有关系的点了,返回此前一次搜索,更新vis[7]=true;    

 表示7已经被搜完,更新f[7]=5。如下图:

继续搜8,发现8没有子节点,则寻找与其有关系的点;

发现9与8有关系,此时vis[9]=true,则他们的最近公共祖先为find(9)=5;(此处好好想一想)

find(9)的顺序为f[9]=7-->f[7]=5-->f[5]=5 return 5; 

发现没有与8有关系的点了,返回此前一次搜索,更新vis[8]=true;

表示8已经被搜完,更新f[8]=5。如下图:

    

回到5发现5也没有没搜过的子节点了,寻找与其有关系的点;

发现7和5有关系,此时vis[7]=true,所以他们的最近公共祖先为find(7)=5;

find(7)的顺序为f[7]=5-->f[5]=5 return 5;

又发现5和3有关系,但是vis[3]=false,所以不操作,此时5的子节点全部搜完了;

返回此前一次搜索,更新vis[5]=true,表示5已经被搜完,更新f[5]=2;

回到2发现2没有未被搜完的子节点,寻找与其有关系的点;

发现没有和2有关系的点,返回此前一次搜索,更新vis[2]=true;    

表示2已经被搜完,更新f[2]=1。如下图:

接着搜3,发现3有一个子节点6;

搜索6,发现6没有子节点,则寻找与6有关系的点,发现4和6有关系;

此时vis[4]=true,所以它们的最近公共祖先为find(4)=1;

find(4)的顺序为f[4]=2-->f[2]=1-->f[1]=1 return 1;

发现没有与6有关系的点了,返回此前一次搜索,更新vis[6]=true,表示6已经被搜完了;

更新f[6]=3。如下图:

回到3发现3没有没被搜过的子节点了,则寻找与3有关系的点;

发现5和3有关系,此时vis[5]=true,则它们的最近公共祖先为find(5)=1;

find(5)的顺序为f[5]=2-->f[2]=1-->f[1]=1 return 1; 

发现没有和3有关系的点了,返回此前一次搜索,更新vis[3]=true;更新f[3]=1。

如下图

最后发现1没有被搜过的子节点也没有有关系的点,此时可以退出整个dfs了。

经过这次dfs我们得出了所有的答案。

总结:

Tarjan离线算法,将所求先储存,然后结合并查集和DFS,

如果所求的两个点都vis[]==1,那么输出他们的father

除了求LCA外,Tarjan算法也可以用来求有向图的强连通分量,具体请参考我的另一篇博文

P3379 【模板】最近公共祖先(LCA)

https://www.luogu.org/problemnew/show/3379

2370 小机房的树

http://codevs.cn/problem/2370/

1036 商务旅行

http://codevs.cn/problem/1036/

LCA  Tarjan算法模板   参考代码C++

https://www.cnblogs.com/fish7/p/4006056.html

http://blog.csdn.net/qq_24451605/article/details/43114243

http://blog.csdn.net/mzyupengju/article/details/47146789

http://blog.csdn.net/tekim/article/details/77750093

https://www.cnblogs.com/jsawz/p/6723221.html

Tarjan算法离线 求 LCA(最近公共祖先)的更多相关文章

  1. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  2. 求LCA最近公共祖先的在线ST算法_C++

    ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n)   查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...

  3. 求LCA最近公共祖先的在线倍增算法模板_C++

    倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂 关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往 ...

  4. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  5. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  6. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

  7. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  8. 算法详解之最近公共祖先(LCA)

    若图片出锅请转至here 概念 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节 ...

  9. 算法学习笔记:最近公共祖先(LCA问题)

    当我们处理树上点与点关系的问题时(例如,最简单的,树上两点的距离),常常需要获知树上两点的最近公共祖先(Lowest Common Ancestor,LCA).如下图所示: 2号点是7号点和9号点的最 ...

随机推荐

  1. CodeForce-811B Vladik and Complicated Book(水题)

    http://codeforces.com/problemset/problem/811/B 题意: 给定一个长度为 N 不重复的数字序列,然后对其进行 M 次询问. 每次询问含L,R,X三个值,问如 ...

  2. git报错:Auto Merge Failed; Fix Conflicts and Then Commit

    本文来源:http://blog.csdn.net/trochiluses/article/details/101007191.出错场景: 协同开发时,我们从远程服务器上pull下代码的时候,出现以下 ...

  3. dede5.7 标题长度限制修改

    我们经常碰到dede标题长度不够用的问题20个字的标题有时候是真的有点短了网上也有些修改长度问题的帖子,但我发现都不完整所以写下来供大家参考下.免得浪费时间 第一步: 修改下面4处文件: dede目录 ...

  4. 低差异序列 (low-discrepancy sequences)之Halton序列均匀产生多维随机数的介绍与实现

    Halton序列 在统计学中,Halton序列是用于生成空间中的点的序列,如Monte Carlo模拟的数值方法,虽然这些序列是确定性的,但它们的差异性很低,也就是说,在许多方面看起来是随机的.它们在 ...

  5. ubuntu中如何切换普通用户、root用户

    1.打开Ubuntu,输入命令:su root,回车提示输入密码,输入密码后提示:认证失败. 2.给root用户设置密码: 命令:sudo passwd root 输入密码,并确认密码. 3.重新输入 ...

  6. javascript traverse object attributes 遍历对象属性

    * for in for (var prop in o) { if (o.hasOwnProperty(prop)) { console.log(o[prop]); } } * Object keys ...

  7. 配置阿里云maven

    在安装好Maven之后,默认的~/.m2目录下是没有maven仓库配置文件settings.xml的,默认使用的是官方的仓库,访问速度会非常慢,我们需要配置下国内的仓库. 创建~/.m2/settin ...

  8. ARC106E-Medals【hall定理,高维前缀和】

    正题 题目链接:https://atcoder.jp/contests/arc106/tasks/arc106_e 题目大意 \(n\)个员工,第\(i\)个在\([1,A_i]\)工作,\([A_i ...

  9. Python编码规范(养成好的编码习惯很重要)

    学习过程养成良好的编码习惯 1. 类名采用驼峰命名法,即类名的每个首字母都大写,如:class HelloWord,类名不使用下划线 2. 函数名只使用小写字母和下划线 3.定义类后面包含一个文档字符 ...

  10. centos7有关于防火墙的命令

    查看防火墙状态 firewall-cmd --state 开启防火墙 systemctl start firewalld.service 关闭防火墙 systemctl stop firewalld. ...