NOIP模拟测试5「星际旅行·砍树·超级树」
星际旅行
0分
瞬间爆炸。
考试的时候觉得这个题怎么这么难,
打个dp,可以被儿子贡献,可以被父亲贡献,还有自环,叶子节点连边可以贡献,非叶子也可以贡献,自环可以跑一回,自环可以跑两回,
关键是同一子树会贡献,不同子树也会贡献。
这还不是欧拉图欧拉路问题,awsl
然后我就放弃了这个题
考完试看题解,tm一个大水题
虽然好像不算水,
思考两个点之间因为连接的是无向边,所以所有点入度出度都为2。
先不考虑自环
如果把两个点之间无向边拆成两个有向边,那么问题就变成去掉两个边使原图存在欧拉路。
于是乎,问题就变得很简单了
如果有自环
可以去掉两个自环,或者去掉一个自环和一个边
砍树
做砍树时问大佬说,“这是一个数论分块”模板题
我:???
原来只有我没学过数论分块吗?
https://www.cnblogs.com/0xfffe/p/9648943.html
略微理解了理解,写的非常清楚
你说这是向下取整,不是向上取整,砍树要向上取整,那篇博客不适用于砍树?
确实不适用
我们要分块的是等式右面的$\sum_{i}^{n} a[i] +k$除以d
因为C是固定的,所以这是一个分段函数,我们要处理的是不同的右面的值最后再跟左面对应
我们然后f存下这一段具体的值,
r存下具体右端点
然后就完了
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define A 11000000
ll l=1,r,n,m,a[A],dl[A],R[A],f[A],zz=0,num=0,ans=0,sum=0;
void precl()
{
while(1){
if(!(sum/l)) break;
r=sum/(sum/l);
f[++num]=sum/r;
R[num]=r;
l=r+1;
}
} int main(){
scanf("%lld%lld",&n,&m);
sum=m;
for(ll i=1;i<=n;i++){
scanf("%lld",&a[i]);
sum+=a[i];
}
precl();
for(ll j=1;j<=num;j++)
{
ll t=0;
for(ll i=1;i<=n;i++){
t+=ceil((double)a[i]/(double)R[j]);
}
// printf("f=%lld R=%lld\n",f[j],R[j]);
if(t<=f[j]) ans=R[j];
}
cout<<ans<<endl;
}
以下是我完全错误的解释
设$k\times i-p=N$ 向上取整设
$\large{\lceil \frac N{i+d} \rceil}=k$
于是$k\times (i+d)-p2=N$
同样得出p2=p+kd
就是照猫画虎的一个过程
底下我不具体推了,
$\large \left \lceil \frac N{\left \lfloor \frac Ni \right \rfloor } \right \rceil$
所以对砍树这道题来说,这确实是个模板题,分析发现这是一个分段函数,维护每一段大小相同,维护l,r下一个l=r+1
具体来说
$\large \left \lceil \frac {a[i]}{d} \right \rceil$不是为我们具体分块的值
$\large \lfloor \frac Ni \rfloor$才是
然后等式右面是$\sum_{i}^{n} a[i] +k$再除以d
这个N就是$\sum_{i}^{n} a[i] +k$
那么这个题就迎刃而解了。
超级树
等我AC了可怜与超市
NOIP模拟测试5「星际旅行·砍树·超级树」的更多相关文章
- NOIP模拟测试17「入阵曲·将军令·星空」
入阵曲 题解 应用了一种美妙移项思想, 我们先考虑在一维上的做法 维护前缀和$(sum[r]-sum[l-1])\%k==0$可以转化为 $sum[r]\% k==sum[l-1]\%k$开个桶维护一 ...
- NOIP模拟测试14「旋转子段·走格子·柱状图」
旋转子段 连60分都没想,考试一直肝t3,t2,没想到t1最简单 我一直以为t1很难,看了题解发现也就那样 题解 性质1 一个包含a[i]旋转区间值域范围最多为min(a[i],i)----max(a ...
- NOIP模拟测试11「string·matrix·big」
打的big出了点小问题,maxx初值我设的0然后少了10分 第二题暴力打炸 第一题剪了一些没用的枝依然40分 总分70 这是一次失败的考试 string 想到和序列那个题很像,但我没做序列,考场回忆学 ...
- NOIP模拟测试19「count·dinner·chess」
反思: 我考得最炸的一次 怎么说呢?简单的两个题0分,稍难(我还不敢说难,肯定又有人喷我)42分 前10分钟看T1,不会,觉得不可做,完全不可做,把它跳了 最后10分钟看T1,发现一个有点用的性质,仍 ...
- 20190803 NOIP模拟测试12「斐波那契(fibonacci)· 数颜色 · 分组 」
164分 rank11/64 这次考的不算太差,但是并没有多大的可能性反超(只比一小部分人高十几分而已),时间分配还是不均,T2两个半小时,T1半个小时,T3-额十几分钟吧 然额付出总是与回报成反比的 ...
- NOIP模拟测试10「大佬·辣鸡·模板」
大佬 显然假期望 我奇思妙想出了一个式子$f[i]=f[i-1]+\sum\limits_{j=1}^{j<=m} C_{k \times j}^{k}\times w[j]$ 然后一想不对得容 ...
- NOIP模拟测试38「金·斯诺·赤」
金 辗转相减见祖宗 高精 #include<bits/stdc++.h> using namespace std; #define A 2000 #define P 1 #define N ...
- NOIP模拟测试28「阴阳·虎·山洞」
写这几个题解我觉得我就像在按照官方题解抄一样 阴阳 题解 将题目中给的阴阳看作黑色和白色 首先我们观察到最后生成图中某种颜色必须是竖着单调递增或竖着单调递减 类似这样 否则不满足这个条件 但合法染色方 ...
- NOIP模拟测试30「return·one·magic」
magic 题解 首先原式指数肯定会爆$long$ $long$ 首先根据欧拉定理我们可以将原式换成$N^{\sum\limits_{i=1}^{i<=N} [gcd(i,N)==1] C_{G ...
随机推荐
- 混部之殇-论云原生资源隔离技术之CPU隔离(一)
作者 蒋彪,腾讯云高级工程师,10+年专注于操作系统相关技术,Linux内核资深发烧友.目前负责腾讯云原生OS的研发,以及OS/虚拟化的性能优化工作. 导语 混部,通常指在离线混部(也有离在线混部之说 ...
- C# 变体(variance)
上节讲到了泛型,这节延申一下,讲一下变体. 变体(variance)是协变(convariance)和抗变(也说逆变contravariance)的统称.这个概念在.net 4中引入,在.net 2. ...
- [拒绝Visual Studio] 团队博客目录
零.项目展示 Alpha版本项目展示 Beta版本项目展示 一.Scrum Meeting 会议记录 1. Alpha阶段 总体时间安排(粗略): 全部原始会议记录请移步 Google Docs ,这 ...
- .Net Core——用代码写代码?
想要用代码写代码,肯定是绕不开反射的.反射的概念相比都不陌生,只是应用多少就因人而异,今天分享一个代码生成器的思路,仅供参考,不要过分依赖哦. 思路分析 众所周知,利用反射可以在程序运行时获取到任一对 ...
- Swagger简明教程
一.什么是swagger Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化RESTful风格的 Web 服务.总体目标是使客户端和文件系统作为服务器以同样的速度来更新.文件的方法, ...
- C#类中方法的执行顺序
有些中级开发小伙伴还是搞不太明白在继承父类以及不同场景实例化的情况下,父类和子类的各种方法的执行顺序到底是什么,下面通过场景的举例来重新认识下方法的执行顺序: (下面内容涉及到了C#中的继承,构造函数 ...
- [Python] Tkinter command
例1:创建按钮 import tkinter as tk class App: def __init__(self,root): frame = tk.Frame(root) frame.pack() ...
- [Java] Spring 示例
(一)IoC/DI 功能 配置解析:将配置文件解析为BeanDefinition结构,便于BeansFactory创建对象 对象创建:BeansFactory 根据配置文件通过反射创建对象,所有类对象 ...
- 优麒麟使用教程第三期:Windows 平台 U 盘启动盘制作
优麒麟使用教程第三期:Windows 平台 U 盘启动盘制作 发布时间:2019-06-27 09:00:15 点击次数:2847 在前几期教程中,小编介绍了如何在虚拟机中安装和使用优麒麟,接下来,小 ...
- centos7 的Linux下ip命令替换ifconfig命令的用法
linux的ip命令和ifconfig类似,但前者功能更强大,并旨在取代后者.使用ip命令,只需一个命令,你就能很轻松地执行一些网络管理任务.ifconfig是net-tools中已被废弃使用的一个命 ...