命名实体识别

概念

命名实体识别(Named Entity Recognition,简称NER) , 是指识别文本中具有特定意义的词(实体),主要包括人名、地名、机构名、专有名词等等,并把我们需要识别的词在文本序列中标注出来。

例如有一段文本:天津市空港经济区

我们要在上面文本中识别一些区域和地点,那么我们需要识别出来内容有:

  • 天津市(地点)
  • 空港经济区(地点)

NER的识别靠的是标签,在长期使用过程中,有一些大家使用比较频繁的标签,这里有个网站可以参考

识别上述例子我们使用了以下几个标签:

  1. "B-ORG":组织或公司(organization)
  2. "I-ORG":组织或公司
  3. "B-PER":人名(person)
  4. "I-PER":人名.
  5. "O":其他非实体(other)
  6. "B-LOC":地名(location)
  7. “I-LOC":地名

你肯定很关心“B”和“I”是什么意思?为什么一个实体会对应两个标签?(除O之外)下面会进行解释

首先说明,在文本中我们是以字为单位进行标注的

那么“B”和“I”是什么东西?

“B”是Begin的缩写,“I”我不知道是什么的缩写(如果你知道可以在评论区留言)

我们知道实体一般是一个词,因此用来表示它的文字应该有多个

而“B”就是用来表示某个实体开头的第一个字的(英文实体则为单词)

如:
天津市可以表示为
天(B-LOC)津(I-LOC)市(I-LOC)
#以B-LOC开头后面必须全为某某LOC,不能出现别的标签,比如B-PER后面跟个I-LOC就不行
#在训练的时候,我们通常会再加一个概率图模型来减少上述错误的发生,如HMM等 纽约New York可以表示为
New(B-LOC) York(I-LOC)

人名同理不再举例

“O”则表示文本中不相关的字

如:
小红想去二空螺蛳粉嗦粉 上述文本中,除了“小红”和“二空螺蛳粉”以外的字都是“O"(前提是你不关心这些字)

注:除了上述标注方法外的标注均为非法标注

那么的HMM又是什么?

隐马尔可夫模型,即HMM,是概率图模型的一种,属于生成模型。

笼统的说,我们在上面谈论的"BIO"的实体标签,就属于一种不可观测的隐状态,而HMM模型就是描述由隐状态序列(实体标记)生成可观测结果(可读文本)的过程.

在我们讨论NER的问题当中,隐状态序列是实体标记序列,而可观测序列是我们可读的原始语料文本序列.

如:

隐藏状态序列:(B-LOC)(I-LOC)(I-LOC)
观测状态序列: 天 津 市

这只是HMM用于NER标签时的情况

我们还可以举个例子将HMM思想拓展一下

假如我在打游戏,这时我突然想起一个人,然后我看通讯录找到他的名字给他打电话

上述例子中,
想起的这个人就是隐藏状态;
他的名字就是观测结果;
而我举例用的整段话就是HMM模型本身(因为它描述了一个过程)

【NLP学习其一】什么是命名实体识别NER?的更多相关文章

  1. NLP入门(八)使用CRF++实现命名实体识别(NER)

    CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...

  2. 『深度应用』NLP命名实体识别(NER)开源实战教程

    近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...

  3. pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别

    文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...

  4. NLP入门(四)命名实体识别(NER)

      本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER).   命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领 ...

  5. 命名实体识别(NER)

    一.任务 Named Entity Recognition,简称NER.主要用于提取时间.地点.人物.组织机构名. 二.应用 知识图谱.情感分析.机器翻译.对话问答系统都有应用.比如,需要利用命名实体 ...

  6. NLP入门(五)用深度学习实现命名实体识别(NER)

    前言   在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...

  7. NLP(二十四)利用ALBERT实现命名实体识别

      本文将会介绍如何利用ALBERT来实现命名实体识别.如果有对命名实体识别不清楚的读者,请参考笔者的文章NLP入门(四)命名实体识别(NER) .   本文的项目结构如下:   其中,albert_ ...

  8. 神经网络结构在命名实体识别(NER)中的应用

    神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...

  9. 用深度学习做命名实体识别(六)-BERT介绍

    什么是BERT? BERT,全称是Bidirectional Encoder Representations from Transformers.可以理解为一种以Transformers为主要框架的双 ...

随机推荐

  1. Vue(1):用Vue-cli构建Vue3项目

    使用Vue-cli构建Vue3项目 1.检查node版本 node -v 以上node版本位14.15.0满足Vue3项目的创建条件(Vu3需要node 版本8以上) 为什么需要安装node? vue ...

  2. Redis内存——内存消耗(内存都去哪了?)

    最新:Redis内存--三个重要的缓冲区 最新:Redis内存--内存消耗(内存都去哪了?) 最新:Redis持久化--如何选择合适的持久化方式 最新:Redis持久化--AOF日志 更多文章... ...

  3. vue常见错误

    错误集锦 错误一 错误二 原因是写太多的import,修改呈如下方式 错误三 源码如下 原因是没有在return后面添加值 应该为 return false

  4. [bug] xshell:退格键乱码

    参考 https://jingyan.baidu.com/article/77b8dc7fd52c576174eab6f6.html

  5. [bug] CDH报错:cloudera-scm-server dead but pid file exists

    参考 https://blog.csdn.net/levy_cui/article/details/51243335

  6. Scala 神奇的下划线 _

    引言 在 Scala 中,下划线 _ 有很多种用法,作为 Scala 初学者也经常被下划线 _ 搞得晕头转向,下面是对 Scala 中下划线 _ 使用的简单总结~ 导包时, 下划线 _ 表示引用多个方 ...

  7. shell 正则匹配IP地址

    比如255.255.255.255 ,共4段,我们将255分为四个部分,0-99,100-199,200-249,250-255 0-99:[1-9]?[0-9]               #    ...

  8. C++ STL 里为什么不维护一个 size 成员变量?

    回答: 为什么 GCC 里要把 list::size() 的复杂度搞成 O(N)? 一通搜索后终于看到有这样的讨论:关于 list::splice() 函数. list 是链表结构,它的优势就在于可以 ...

  9. 第一章 DevOps概述

    什么是软件开发 软件开发是根据用户要求建造出软件系统或者系统中的软件部分的过程. 软件开发是一项包括需求捕捉,需求分析,实现和测试的系统工程 软件开发有哪些困难? 软件开发的本质困难 复杂性 不可见性 ...

  10. 详解 WebRTC 高音质低延时的背后 — AGC(自动增益控制)

    前面我们介绍了 WebRTC 音频 3A 中的声学回声消除(AEC:Acoustic Echo Cancellation)的基本原理与优化方向,这一章我们接着聊另外一个 "A" - ...