题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

Specifically, FJ’s farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field — that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ’s farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

农民约翰已经注意到他的奶牛经常在附近的田野之间移动。考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛,而且是为了从附近的田地里去吃草的奶牛。

具体来说,FJ的农场由N块田野构成(1 <= n <= 100,000),每两块田野之间有一条无向边连接(总共n-1条边)。FJ设计了农场,任何两个田野i和j之间,有且只有一条路径连接i和j。第 i块田野是C(i)头牛的住所,尽管奶牛们有时会通过k条路到达其他不同的田野(1<=k<=20)。

FJ想在每块田野上种上够M(i)头奶牛吃的草。M(i)指能从其他点经过最多k步就能到达这个点的奶牛的个数。

现给出FJ的每一个田野的奶牛的数目,请帮助FJ计算每一块田野的M(i)。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

  • Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

  • Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

第一行:n和k;

后面n-1行:i和j(两块田野);

之后n行:1..n每一块的C(i);

输出格式:

  • Lines 1..N: Line i should contain the value of M(i).

n行:每行M(i);//i:1..2

输入输出样例

输入样例#1: 复制

6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6

输出样例#1: 复制

15
21
16
10
8
11

说明

There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

题目简述:给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

思路

树型dp + 简单容斥原理

  • 用$f[i][j]$表示距节点i的距离小于等于j的所有节点的权值和,即牛的数量
  • $son[i]$表示i的子节点数
  • 可以想到,将此状态转移至与自己连通的v节点的$f[v][j-1]$中,即 $f[i][j]=f[v][j-1]+c[i]$

但是,这样会有一部分重复计算。因为$f[v][j-1]$中还包括了点i与点i距离小于等于j-2的点

  • 只要再减掉重复位置,即$f[i][j-2]*(son[i]-1)$

$$f[i][j]=f[s][j-1]-f[i][j-2]*(son[i]-1)$$

代码

#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register int
using namespace std;
const int maxn=1e5+50;
inline int read(){
int x=0,w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
}
struct data {
int to,nxt;
}edge[210001]; int head[maxn],tot;
int f[maxn][21],sons[maxn];
int n,k;
inline void add(int a,int b) {
edge[++tot].to=b;
edge[tot].nxt=head[a];
head[a]=tot;
edge[++tot].to=a;
edge[tot].nxt=head[b];
head[b]=tot;
sons[a]++; sons[b]++;
}
int main() {
re i,j,s;
n=read(),k=read();
int a,b;
for(i=1;i<n;++i) {
a=read(),b=read();
add(a,b);
}
for(i=1;i<=n;++i) f[i][0]=read();
for(j=1;j<=k;++j) for(i=1;i<=n;++i){
for(s=head[i];s;s=edge[s].nxt) f[i][j]+=f[edge[s].to][j-1];
if(j>1) f[i][j]-=(sons[i]-1)*f[i][j-2];
else f[i][1]+=f[i][0];
}
for(i=1;i<=n;++i) printf("%d\n",f[i][k]);
return 0;
}

【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp的更多相关文章

  1. LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows

    传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...

  2. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  3. P3047 [USACO12FEB]附近的牛Nearby Cows

    https://www.luogu.org/problemnew/show/P304 1 #include <bits/stdc++.h> 2 #define up(i,l,r) for( ...

  4. luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp

    $k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...

  5. LuoguP3047 [USACO12FEB]附近的牛Nearby Cows(树形DP,容斥)

    \[f[u][step] = \begin{cases} C[u] & step = 0 \\ (\sum{f[v][step - 1]}) - f[u][step - 2] \cdot (d ...

  6. 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...

  7. 【洛谷3047】[USACO12FEB]附近的牛Nearby Cows

    题面 题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into acc ...

  8. [USACO12FEB]附近的牛Nearby Cows

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  9. 【[USACO12FEB]附近的牛Nearby Cows】

    我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...

随机推荐

  1. linux 发送邮件

    参考资料:https://www.cnblogs.com/imweihao/p/7250500.html https://blog.csdn.net/liang19890820/article/det ...

  2. Unity shader 护盾shield的简单实现

    先上效果图 shader所用的贴图资源 扰动 直接对uv进行变换就可以了,记得首先把六边形格子地图的Tilling调高点 先预先调成合适大小的六边形,然后repeat铺满整个护盾 // Tiles a ...

  3. C++ primer plus读书笔记——第9章 内存模型和名称空间

    第9章 内存模型和名称空间 1. 头文件常包含的内容: 函数原型. 使用#define或const定义的符号常量. 结构声明. 类声明. 模板声明. 内联函数. 2. 如果文件名被包含在尖括号中,则C ...

  4. 编译课设·CLion到VS踩坑·解决·备忘录

    应试用,VS使用习惯和JB系差别还是蛮大的 打不过他们就加入他们 键位修改 工具-选项 键盘:改keymap 字体和颜色:宋体必改. 自动恢复:自动保存默认3分钟 CMake:自救时可以看一下 键位名 ...

  5. Dart 2.13 版现已发布

    作者 / Kevin Moore & Michael Thomsen Dart 2.13 版现已发布,其中新增了类型别名功能,这是目前用户呼声第二高的语言功能.Dart 2.13 还改进了 D ...

  6. [DB] Spark Core (1)

    生态 Spark Core:最重要,其中最重要的是RDD(弹性分布式数据集) Spark SQL Spark Streaming Spark MLLib:机器学习算法 Spark Graphx:图计算 ...

  7. 011.Ansible条件语句

    一 简介 在有的时候play的结果依赖于变量.fact或者是前一个任务的执行结果,或者有的时候,我们会基于上一个task执行返回的结果而决定如何执行后续的task.这个时候就需要用到条件判断. 条件语 ...

  8. C++知识点案例 笔记-4

    1.纯虚函数 2.抽象类 3.内部类 4.运算符重载 5.类的函数重载 6.友元的函数重载 1.纯虚函数 ==纯虚函数== //有时基类中无法给出函数的具体体现,定义纯虚函数可以为派生函数保留一个函数 ...

  9. VUE如何关闭代码规范extra semiclon/VUE新手必看-(转载)

    VUE如何关闭代码规范 最近在学VUE,作为一个设计转前端的小白鼠. 总是能碰到各种各样奇葩的问题. 比如我碰到了 extra semicolon 百度了下说是这个原因造成的: 但是!!!!!关键点来 ...

  10. s9 Linux 进程管理命令

    9.1 ps:查看进程 9.2-3 pstree & pgrep 9.4-6 kill & killall & pkill 9.7 top:实时显示系统中各个进程的资源占用状况 ...