【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp
题目描述
Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.
Specifically, FJ’s farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).
FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field — that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ’s farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.
农民约翰已经注意到他的奶牛经常在附近的田野之间移动。考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛,而且是为了从附近的田地里去吃草的奶牛。
具体来说,FJ的农场由N块田野构成(1 <= n <= 100,000),每两块田野之间有一条无向边连接(总共n-1条边)。FJ设计了农场,任何两个田野i和j之间,有且只有一条路径连接i和j。第 i块田野是C(i)头牛的住所,尽管奶牛们有时会通过k条路到达其他不同的田野(1<=k<=20)。
FJ想在每块田野上种上够M(i)头奶牛吃的草。M(i)指能从其他点经过最多k步就能到达这个点的奶牛的个数。
现给出FJ的每一个田野的奶牛的数目,请帮助FJ计算每一块田野的M(i)。
输入输出格式
输入格式:
Line 1: Two space-separated integers, N and K.
Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.
Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)
第一行:n和k;
后面n-1行:i和j(两块田野);
之后n行:1..n每一块的C(i);
输出格式:
- Lines 1..N: Line i should contain the value of M(i).
n行:每行M(i);//i:1..2
输入输出样例
输入样例#1: 复制
6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6
输出样例#1: 复制
15
21
16
10
8
11
说明
There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.
Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.
题目简述:给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。
思路
树型dp + 简单容斥原理
- 用$f[i][j]$表示
距节点i的距离小于等于j的所有节点的权值和
,即牛的数量
- $son[i]$表示
i的子节点数
- 可以想到,将此状态转移至与自己连通的v节点的$f[v][j-1]$中,即 $f[i][j]=f[v][j-1]+c[i]$
但是,这样会有一部分重复计算。因为$f[v][j-1]$中还包括了
点i
和与点i距离小于等于j-2的点
- 只要再减掉重复位置,即$f[i][j-2]*(son[i]-1)$
$$f[i][j]=f[s][j-1]-f[i][j-2]*(son[i]-1)$$
代码
#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register int
using namespace std;
const int maxn=1e5+50;
inline int read(){
int x=0,w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
}
struct data {
int to,nxt;
}edge[210001]; int head[maxn],tot;
int f[maxn][21],sons[maxn];
int n,k;
inline void add(int a,int b) {
edge[++tot].to=b;
edge[tot].nxt=head[a];
head[a]=tot;
edge[++tot].to=a;
edge[tot].nxt=head[b];
head[b]=tot;
sons[a]++; sons[b]++;
}
int main() {
re i,j,s;
n=read(),k=read();
int a,b;
for(i=1;i<n;++i) {
a=read(),b=read();
add(a,b);
}
for(i=1;i<=n;++i) f[i][0]=read();
for(j=1;j<=k;++j) for(i=1;i<=n;++i){
for(s=head[i];s;s=edge[s].nxt) f[i][j]+=f[edge[s].to][j-1];
if(j>1) f[i][j]-=(sons[i]-1)*f[i][j-2];
else f[i][1]+=f[i][0];
}
for(i=1;i<=n;++i) printf("%d\n",f[i][k]);
return 0;
}
【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp的更多相关文章
- LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows
传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...
- 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows
P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...
- P3047 [USACO12FEB]附近的牛Nearby Cows
https://www.luogu.org/problemnew/show/P304 1 #include <bits/stdc++.h> 2 #define up(i,l,r) for( ...
- luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp
$k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...
- LuoguP3047 [USACO12FEB]附近的牛Nearby Cows(树形DP,容斥)
\[f[u][step] = \begin{cases} C[u] & step = 0 \\ (\sum{f[v][step - 1]}) - f[u][step - 2] \cdot (d ...
- 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows
P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...
- 【洛谷3047】[USACO12FEB]附近的牛Nearby Cows
题面 题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into acc ...
- [USACO12FEB]附近的牛Nearby Cows
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- 【[USACO12FEB]附近的牛Nearby Cows】
我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...
随机推荐
- 使用TK框架中updateByPrimaryKey与updateByPrimaryKeySelective区别
int updateByPrimaryKey(T var1); int updateByPrimaryKeySelective(T var1); updateByPrimaryKeySelective ...
- java使用户EasyExcel导入导出excel
使用alibab的EasyExce完成导入导出excel 一.准备工作 1.导包 <!-- poi 相关--> <dependency> <groupId>org. ...
- Flink去重统计-基于自定义布隆过滤器
一.背景说明 在Flink中对流数据进行去重计算是常有操作,如流量域对独立访客之类的统计,去重思路一般有三个: 基于Hashset来实现去重 数据存在内存,容量小,服务重启会丢失. 使用状态编程Val ...
- PostgreSQL条件表达式
条件表达式在日常工作中很多场景都会用到,比如某个字段为空,取另外一个字段:某个值大于多少,取什么字段,小于多少取什么字段等等.那么下面来简单的学习下PostgreSQL有那些条件表达式. 1.CA ...
- 正则表达式、编辑器(vi、sed、awk)
1. vi 2. 正则表达式 3. sed 1)打印命令:p 2)删除命令:d 3)替换命令:s 4. awk 1)awk 基本用途 2)匹配打印 3)判断打印 4)数组 1. vi vi 是 Lin ...
- Vue3响应式系统api 之 ref reactive
reactive 接收一个普通对象然后返回该普调对象的响应式代理.等同于2.x的 Vue.observable() Vue3中响应数据核心是 reactive , reactive 中的实现是由 P ...
- [bug] MapReduce卡死
参考 https://blog.csdn.net/WYpersist/article/details/80202055
- CentOS 7系统启动后怎么从命令行模式切换到图形界面模式
CentOS 7系统启动后怎么从命令行模式切换到图形界面模式原创传智播客官方博客 最后发布于2020-04-08 15:44:43 阅读数 88 收藏展开一.存在问题 在VMware虚拟机中成功安装c ...
- OSI 七层参考模型与 TCP/IP 四层协议
OSI 七层参考模型 OSI (Open System Interconnect,开放系统互连参考模型)是由 ISO(国际标准化组织)定义的,它是个灵活的.稳健的和可互操作的模型,并不是协议,常用来分 ...
- MyBatis 高级查询环境准备(八)
MyBatis 高级查询 之前在学习 Mapper XML 映射文件时,说到 resultMap 标记是 MyBatis 中最重要最强大也是最复杂的标记,而且还提到后面会详细介绍它的高级用法. 听到高 ...