【笔记4】用pandas实现条目数据格式的推荐算法 (基于用户的协同)
'''
基于用户的协同推荐
条目数据
'''
import pandas as pd
from io import StringIO
import json
#数据类型一:条目(用户、商品、打分)(避免巨型稀疏矩阵)
csv_txt = '''"Angelica","Blues Traveler",3.5
"Angelica","Broken Bells",2.0
"Angelica","Norah Jones",4.5
"Angelica","Phoenix",5.0
"Angelica","Slightly Stoopid",1.5
"Angelica","The Strokes",2.5
"Angelica","Vampire Weekend",2.0
"Bill","Blues Traveler",2.0
"Bill","Broken Bells",3.5
"Bill","Deadmau5",4.0
"Bill","Phoenix",2.0
"Bill","Slightly Stoopid",3.5
"Bill","Vampire Weekend",3.0
"Chan","Blues Traveler",5.0
"Chan","Broken Bells",1.0
"Chan","Deadmau5",1.0
"Chan","Norah Jones",3.0
"Chan","Phoenix",5,
"Chan","Slightly Stoopid",1.0
"Dan","Blues Traveler",3.0
"Dan","Broken Bells",4.0
"Dan","Deadmau5",4.5
"Dan","Phoenix",3.0
"Dan","Slightly Stoopid",4.5
"Dan","The Strokes",4.0
"Dan","Vampire Weekend",2.0
"Hailey","Broken Bells",4.0
"Hailey","Deadmau5",1.0
"Hailey","Norah Jones",4.0
"Hailey","The Strokes",4.0
"Hailey","Vampire Weekend",1.0
"Jordyn","Broken Bells",4.5
"Jordyn","Deadmau5",4.0
"Jordyn","Norah Jones",5.0
"Jordyn","Phoenix",5.0
"Jordyn","Slightly Stoopid",4.5
"Jordyn","The Strokes",4.0
"Jordyn","Vampire Weekend",4.0
"Sam","Blues Traveler",5.0
"Sam","Broken Bells",2.0
"Sam","Norah Jones",3.0
"Sam","Phoenix",5.0
"Sam","Slightly Stoopid",4.0
"Sam","The Strokes",5.0
"Veronica","Blues Traveler",3.0
"Veronica","Norah Jones",5.0
"Veronica","Phoenix",4.0
"Veronica","Slightly Stoopid",2.5
"Veronica","The Strokes",3.0'''
#数据类型二:json数据(用户、商品、打分)
json_txt = '''{"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
"Norah Jones": 4.5, "Phoenix": 5.0,
"Slightly Stoopid": 1.5,
"The Strokes": 2.5, "Vampire Weekend": 2.0},
"Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
"Deadmau5": 4.0, "Phoenix": 2.0,
"Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
"Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
"Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
"Slightly Stoopid": 1.0},
"Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
"Deadmau5": 4.5, "Phoenix": 3.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 2.0},
"Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
"Norah Jones": 4.0, "The Strokes": 4.0,
"Vampire Weekend": 1.0},
"Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0,
"Norah Jones": 5.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 4.0},
"Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
"Norah Jones": 3.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.0, "The Strokes": 5.0},
"Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
"Phoenix": 4.0, "Slightly Stoopid": 2.5,
"The Strokes": 3.0}
}'''
df = None
#方式一:加载csv数据
def load_csv_txt():
global df
df = pd.read_csv(StringIO(csv_txt), header=None, names=['user','goods','rate'])
#方式二:加载json数据(把json读成条目)
def load_json_txt():
global df
#由json数据得到字典
users = json.loads(json_txt)
#遍历字典,得到条目
csv_txt_ = ''
for user in users:
for goods in users[user]:
csv_txt_ += '{},{},{}\n'.format(user, goods, users[user][goods])
df = pd.read_csv(StringIO(csv_txt_), header=None, names=['user','goods','rate'])
print('测试:读取数据')
#load_csv_txt()
load_json_txt()
def build_xy(user_name1, user_name2):
df1 = df.ix[df['user'] == user_name1, ['goods','rate']]
df2 = df.ix[df['user'] == user_name2, ['goods','rate']]
df3 = pd.merge(df1, df2, on='goods', how='inner') #只保留两人都有评分的商品的评分
return df3['rate_x'], df3['rate_y'] #merge之后默认的列名:rate_x,rate_y
#曼哈顿距离
def manhattan(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
return sum(abs(x - y))
#欧几里德距离
def euclidean(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
return sum((x - y)**2)**0.5
#闵可夫斯基距离
def minkowski(user_name1, user_name2, r):
x, y = build_xy(user_name1, user_name2)
return sum(abs(x - y)**r)**(1/r)
#皮尔逊相关系数
def pearson(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
mean1, mean2 = x.mean(), y.mean()
#分母
denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
return [sum((x-mean1)*(y-mean2))/denominator, 0][denominator == 0]
#余弦相似度(数据的稀疏性问题,在文本挖掘中应用得较多)
def cosine(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
#分母
denominator = (sum(x*x)*sum(y*y))**0.5
return [sum(x*y)/denominator, 0][denominator == 0]
metric_funcs = {
'manhattan': manhattan,
'euclidean': euclidean,
'minkowski': minkowski,
'pearson': pearson,
'cosine': cosine
}
print('\n测试:计算Angelica与Bill的曼哈顿距离')
print(manhattan('Angelica','Bill'))
#计算最近的邻居(返回:pd.Series)
def computeNearestNeighbor(user_name, metric='pearson', k=3, r=2):
'''
metric: 度量函数
k: 返回k个邻居
r: 闵可夫斯基距离专用
返回:pd.Series,其中index是邻居名称,values是距离
'''
array = df[df['user'] != user_name]['user'].unique()
if metric in ['manhattan', 'euclidean']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name,)).nsmallest(k)
elif metric in ['minkowski']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name, r,)).nsmallest(k)
elif metric in ['pearson', 'cosine']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name,)).nlargest(k)
print('\n测试:计算Hailey的最近邻居')
print(computeNearestNeighbor('Hailey'))
#向给定用户推荐(返回:pd.DataFrame)
def recommend(user_name):
"""返回推荐结果列表"""
# 找到距离最近的用户名
nearest_username = computeNearestNeighbor(user_name).index[0]
# 找出这位用户评价过、但自己未曾评价的乐队
df1 = df.ix[df['user'] == user_name, ['goods', 'rate']]
df2 = df.ix[df['user'] == nearest_username, ['goods', 'rate']]
df3 = pd.merge(df1, df2, on='goods', how='outer')
return df3.ix[(df3['rate_x'].isnull()) & (df3['rate_y'].notnull()), ['goods', 'rate_y']].sort_values(by='rate_y')
print('\n测试:为Hailey做推荐')
print(recommend('Hailey'))
#向给定用户推荐(返回:pd.Series)
def recommend2(user_name, metric='pearson', k=3, n=5, r=2):
'''
metric: 度量函数
k: 根据k个最近邻居,协同推荐
r: 闵可夫斯基距离专用
n: 推荐的商品数目
返回:pd.Series,其中index是商品名称,values是加权评分
'''
# 找到距离最近的k个邻居
nearest_neighbors = computeNearestNeighbor(user_name, metric='pearson', k=k, r=r)
# 计算权值
if metric in ['manhattan', 'euclidean', 'minkowski']: # 距离越小,越类似
nearest_neighbors = 1 / nearest_neighbors # 所以,取倒数(或者别的减函数,如:y=2**-x)
elif metric in ['pearson', 'cosine']: # 距离越大,越类似
pass
nearest_neighbors = nearest_neighbors / nearest_neighbors.sum() #已经变为权值
# 逐个邻居找出其评价过、但自己未曾评价的乐队(或商品)的评分,并乘以权值
neighbors_rate_with_weight = []
for neighbor_name in nearest_neighbors.index:
# 每个结果:pd.Series,其中index是商品名称,values是评分(已乘权值)
df1 = df.ix[df['user'] == user_name, ['goods', 'rate']]
df2 = df.ix[df['user'] == neighbor_name, ['goods', 'rate']]
df3 = pd.merge(df1, df2, on='goods', how='outer')
df4 = df3.ix[(df3['rate_x'].isnull()) & (df3['rate_y'].notnull()), ['goods', 'rate_y']]
#注意这中间有一个转化为pd.Series的操作!
neighbors_rate_with_weight.append(pd.Series(df4['rate_y'].tolist(), index=df4['goods']) * nearest_neighbors[neighbor_name])
# 把邻居们的加权评分拼接成pd.DataFrame,按列累加,取最大的前n个商品的评分
return pd.concat(neighbors_rate_with_weight, axis=1).sum(axis=1, skipna=True).nlargest(n) # 黑科技!
print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='manhattan', k=3, n=5))
print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='euclidean', k=3, n=5, r=2))
print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='pearson', k=1, n=5))
【笔记4】用pandas实现条目数据格式的推荐算法 (基于用户的协同)的更多相关文章
- 【笔记3】用pandas实现矩阵数据格式的推荐算法 (基于用户的协同)
原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于 ...
- 【笔记6】用pandas实现条目数据格式的推荐算法 (基于物品的协同)
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...
- 【笔记5】用pandas实现矩阵数据格式的推荐算法 (基于物品的协同)
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...
- R语言实现关联规则与推荐算法(学习笔记)
R语言实现关联规则 笔者前言:以前在网上遇到很多很好的关联规则的案例,最近看到一个更好的,于是便学习一下,写个学习笔记. 1 1 0 0 2 1 1 0 0 3 1 1 0 1 4 0 0 0 0 5 ...
- 学习笔记-menusript控件中条目权限设置使用
在做一个小程序的时候,偶然发现了使用menusript控件做权限设置的方法,仅此标记,以供参考. 首先创建一个实例:testuseright.sln, 在项目文件里创建两个窗体:Form1.cs和us ...
- Python笔记 #12# Dictionary & Pandas: Object Creation
Document of Dictionaries 10 Minutes to pandas tutorialspoint import pandas as pd data = [['Alex',10] ...
- Office365学习笔记—Lookup类型加载条目过多解决方案
1,随着接触的项目越来越多,遇到的各种奇葩的问题也越来越多,不得不说,SharePoint是个好东西,提高了开发效率,简化了很多基础的功能.但是令人头疼的问题是,当你想做个稍微复杂点的功能,就不得不研 ...
- Office365学习笔记—列表查询,删除条目,更新条目。
1,基于Query语句的列表查询. function retrieveListItems(itemId) { var siteUrl=_spPageContextInfo.webServerRelat ...
- 读书笔记一、pandas之series
转自 # 直接传入一组数据 from pandas import Series, DataFrame obj = Series([4, 2, 3]) obj 0 4 1 2 2 3 dtype: in ...
随机推荐
- 使用PHPMailer发送邮件
如果要使用php发送邮件,则可以使用PHP 内置的mail() 函数,但是mail()函数需要有服务器支持 必须有自己的邮件服务器,如果使用stmp服务来发送邮件的话相当于代替别人发送,而不是从自己服 ...
- 在 Visual Studio 等编辑器/IDE中自动切换输入法,不需要手动的有没有?
使用Visual Studio写代码,经常遇到的一个问题就是切换中文输入法麻烦,输入完注释//,要切换到中文,输入完引号,要输入中文,然后还需要切换回来,有没有? 有时候中文输入法忽然失效有没有?明明 ...
- 【单页应用巨坑之History】细数History带给单页应用的噩梦
前言 在我们日常的网页浏览中,我们非常喜欢做一个操作:点击浏览器的前进后退在Ajax技术出现后,有些时候前进后退就会给开发者带来困扰,甚至一些开发者试图去干掉History随着Html5的发展,移动端 ...
- iOS中常见 Crash 及解决方案
来源:枫影JustinYan 链接:http://justinyan.me/post/1609 一.访问了一个已经被释放的对象 在不使用 ARC 的时候,内存要自己管理,这时重复或过早释放都有可能导致 ...
- Android 学习心得 TextView 添加垂直滚动条
XMl文件中: 添加android:scrollbars="vertical" 添加android:maxLines="10" //设置一页最多显示10行 a ...
- MySQL备份还原——mysqldump工具介绍
mysqldump是一款MySQL逻辑备份的工具,他将数据库里面的对象(表)导出成SQL脚本文件.有点类似于SQL SEVER的"任务-生成脚本"的逻辑备份功能.mysqldump ...
- ORACLE 移动数据文件 控制文件 重做日志文件
ORACLE数据库有时候需要对存储进行调整,增加分区.IO调优等等,此时需要移动数据文件.重做日志文件.控制文件等等,下文结合例子总结一下这方面的知识点. 进行数据文件.重做日志文件.控制文件的迁移前 ...
- JVM之Parallel Old收集器
Parallel Scavenge的老年代版本 标记-整理算法 注重吞吐量及cpu资源敏感环境.
- 最新版powerdesign16.5连接数据库错误解决
由于工作需要,需要将数据库中的表结构逆向生成到powerdesign中,但是连接数据库一直连接不上,Connection test failed报如下错误: 解决方案: 下载ojdbc14.jar,拷 ...
- C#调用C/C++动态库 封送结构体,结构体数组
一. 结构体的传递 #define JNAAPI extern "C" __declspec(dllexport) // C方式导出函数 typedef struct { int ...