Gaussian Mixture Model
Gaussian Mixture Model (GMM)。事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概率,又称作 soft assignment 。
得出一个概率有很多好处,因为它的信息量比简单的一个结果要多,比如,我可以把这个概率转换为一个 score ,表示算法对自己得出的这个结果的把握。也许我可以对同一个任务,用多个方法得到结果,最后选取“把握”最大的那个结果;另一个很常见的方法是在诸如疾病诊断之类的场所,机器对于那些很容易分辨的情况(患病或者不患病的概率很高)可以自动区分,而对于那种很难分辨的情况,比如,49% 的概率患病,51% 的概率正常,如果仅仅简单地使用 50% 的阈值将患者诊断为“正常”的话,风险是非常大的,因此,在机器对自己的结果把握很小的情况下,会“拒绝发表评论”,而把这个任务留给有经验的医生去解决。
废话说了一堆,不过,在回到 GMM 之前,我们再稍微扯几句。我们知道,不管是机器还是人,学习的过程都可以看作是一种“归纳”的过程,在归纳的时候你需要有一些假设的前提条件,例如,当你被告知水里游的那个家伙是鱼之后,你使用“在同样的地方生活的是同一种东西”这类似的假设,归纳出“在水里游的都是鱼”这样一个结论。当然这个过程是完全“本能”的,如果不仔细去想,你也不会了解自己是怎样“认识鱼”的。另一个值得注意的地方是这样的假设并不总是完全正确的,甚至可以说总是会有这样那样的缺陷的,因此你有可能会把虾、龟、甚至是潜水员当做鱼。也许你觉得可以通过修改前提假设来解决这个问题,例如,基于“生活在同样的地方并且穿着同样衣服的是同一种东西”这个假设,你得出结论:在水里有并且身上长有鳞片的是鱼。可是这样还是有问题,因为有些没有长鳞片的鱼现在又被你排除在外了。
在这个问题上,机器学习面临着和人一样的问题,在机器学习中,一个学习算法也会有一个前提假设,这里被称作“归纳偏执 (bias)”(bias 这个英文词在机器学习和统计里还有其他许多的意思)。例如线性回归,目的是要找一个函数尽可能好地拟合给定的数据点,它的归纳偏执就是“满足要求的函数必须是线性函数”。一个没有归纳偏执的学习算法从某种意义上来说毫无用处,就像一个完全没有归纳能力的人一样,在第一次看到鱼的时候有人告诉他那是鱼,下次看到另一条鱼了,他并不知道那也是鱼,因为两条鱼总有一些地方不一样的,或者就算是同一条鱼,在河里不同的地方看到,或者只是看到的时间不一样,也会被他认为是不同的,因为他无法归纳,无法提取主要矛盾、忽略次要因素,只好要求所有的条件都完全一样──然而哲学家已经告诉过我们了:世界上不会有任何样东西是完全一样的,所以这个人即使是有无比强悍的记忆力,也绝学不到任何一点知识。
这个问题在机器学习中称作“过拟合 (Overfitting)”,例如前面的回归的问题,如果去掉“线性函数”这个归纳偏执,因为对于 N 个点,我们总是可以构造一个 N-1 次多项式函数,让它完美地穿过所有的这 N 个点,或者如果我用任何大于 N-1 次的多项式函数的话,我甚至可以构造出无穷多个满足条件的函数出来。如果假定特定领域里的问题所给定的数据个数总是有个上限的话,我可以取一个足够大的 N ,从而得到一个(或者无穷多个)“超级函数”,能够 fit 这个领域内所有的问题。然而这个(或者这无穷多个)“超级函数”有用吗?只要我们注意到学习的目的(通常)不是解释现有的事物,而是从中归纳出知识,并能应用到新的事物上,结果就显而易见了。
没有归纳偏执或者归纳偏执太宽泛会导致 Overfitting ,然而另一个极端──限制过大的归纳偏执也是有问题的:如果数据本身并不是线性的,强行用线性函数去做回归通常并不能得到好结果。难点正在于在这之间寻找一个平衡点。不过人在这里相对于(现在的)机器来说有一个很大的优势:人通常不会孤立地用某一个独立的系统和模型去处理问题,一个人每天都会从各个来源获取大量的信息,并且通过各种手段进行整合处理,归纳所得的所有知识最终得以统一地存储起来,并能有机地组合起来去解决特定的问题。这里的“有机”这个词很有意思,搞理论的人总能提出各种各样的模型,并且这些模型都有严格的理论基础保证能达到期望的目的,然而绝大多数模型都会有那么一些“参数”(例如 K-means 中的 k ),通常没有理论来说明参数取哪个值更好,而模型实际的效果却通常和参数是否取到最优值有很大的关系,我觉得,在这里“有机”不妨看作是所有模型的参数已经自动地取到了最优值。另外,虽然进展不大,但是人们也一直都期望在计算机领域也建立起一个统一的知识系统(例如语意网就是这样一个尝试)。
废话终于说完了,回到 GMM 。按照我们前面的讨论,作为一个流行的算法,GMM 肯定有它自己的一个相当体面的归纳偏执了。其实它的假设非常简单,顾名思义,Gaussian Mixture Model ,就是假设数据服从 Mixture Gaussian Distribution ,换句话说,数据可以看作是从数个 Gaussian Distribution 中生成出来的。实际上,我们在 K-means 和 K-medoids 两篇文章中用到的那个例子就是由三个 Gaussian 分布从随机选取出来的。实际上,从中心极限定理可以看出,Gaussian 分布(也叫做正态 (Normal) 分布)这个假设其实是比较合理的,除此之外,Gaussian 分布在计算上也有一些很好的性质,所以,虽然我们可以用不同的分布来随意地构造 XX Mixture Model ,但是还是 GMM 最为流行。另外,Mixture Model 本身其实也是可以变得任意复杂的,通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布。
每个 GMM 由
个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K 个 Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 \pi_k ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。
那么如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。
现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 \pi_k、\mu_k 和 \Sigma_k 这些参数。 我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于 \prod_{i=1}^N p(x_i) ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 \sum_{i=1}^N \log p(x_i),得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。
下面让我们来看一看 GMM 的 log-likelihood function :

由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于 K-means 的两步。
- 估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据
来说,它由第
个 Component 生成的概率为
由于式子里的
和
也是需要我们估计的值,我们采用迭代法,在计算
的时候我们假定
和
均已知,我们将取上一次迭代所得的值(或者初始值)。 - 估计每个 Component 的参数:现在我们假设上一步中得到的
就是正确的“数据
由 Component
生成的概率”,亦可以当做该 Component 在生成这个数据上所做的贡献,或者说,我们可以看作
这个值其中有
这部分是由 Component
所生成的。集中考虑所有的数据点,现在实际上可以看作 Component 生成了
这些点。由于每个 Component 都是一个标准的 Gaussian 分布,可以很容易分布求出最大似然所对应的参数值:
其中
,并且
也顺理成章地可以估计为
。 - 重复迭代前面两步,直到似然函数的值收敛为止。
当然,上面给出的只是比较“直观”的解释,想看严格的推到过程的话,可以参考 Pattern Recognition and Machine Learning 这本书的第九章。有了实际的步骤,再实现起来就很简单了。Matlab 代码如下:
(Update 2012.07.03:如果你直接把下面的代码拿去运行了,碰到 covariance 矩阵 singular 的情况,可以参见这篇文章。)
1 |
function varargout = gmm(X, K_or_centroids) |
函数返回的 Px 是一个
的矩阵,对于每一个
,我们只要取该矩阵第
行中最大的那个概率值所对应的那个 Component 为
所属的 cluster 就可以实现一个完整的聚类方法了。对于最开始的那个例子,GMM 给出的结果如下:

相对于之前 K-means 给出的结果,这里的结果更好一些,左下角的比较稀疏的那个 cluster 有一些点跑得比较远了。当然,因为这个问题原本就是完全有 Mixture Gaussian Distribution 生成的数据,GMM (如果能求得全局最优解的话)显然是可以对这个问题做到的最好的建模。
另外,从上面的分析中我们可以看到 GMM 和 K-means 的迭代求解法其实非常相似(都可以追溯到 EM 算法,下一次会详细介绍),因此也有和 K-means 同样的问题──并不能保证总是能取到全局最优,如果运气比较差,取到不好的初始值,就有可能得到很差的结果。对于 K-means 的情况,我们通常是重复一定次数然后取最好的结果,不过 GMM 每一次迭代的计算量比 K-means 要大许多,一个更流行的做法是先用 K-means (已经重复并取最优值了)得到一个粗略的结果,然后将其作为初值(只要将 K-means 所得的 centroids 传入 gmm 函数即可),再用 GMM 进行细致迭代。
如我们最开始所讨论的,GMM 所得的结果(Px)不仅仅是数据点的 label ,而包含了数据点标记为每个 label 的概率,很多时候这实际上是非常有用的信息。最后,需要指出的是,GMM 本身只是一个模型,我们这里给出的迭代的办法并不是唯一的求解方法。感兴趣的同学可以自行查找相关资料。
Gaussian Mixture Model的更多相关文章
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
- Fisher Vector Encoding and Gaussian Mixture Model
一.背景知识 1. Discriminant Learning Algorithms(判别式方法) and Generative Learning Algorithms(生成式方法) 现在常见的模式 ...
- 聚类之高斯混合模型(Gaussian Mixture Model)【转】
k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussia ...
- 漫谈 Clustering (3): Gaussian Mixture Model
上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM ...
- 高斯混合模型Gaussian Mixture Model (GMM)——通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布
从几何上讲,单高斯分布模型在二维空间应该近似于椭圆,在三维空间上近似于椭球.遗憾的是在很多分类问题中,属于同一类别的样本点并不满足“椭圆”分布的特性.这就引入了高斯混合模型.——可以认为是基本假设! ...
- 混合高斯模型(Gaussian mixture model, GMM)
1. 前言 这就是为什么我要学习一下二维高斯分布的原因: 总感觉数学知识不够用呐,顺带把混合高斯模型也回顾一下. 2. 单高斯模型(Gaussian single model, GSM) 2.1 一维 ...
- 我自己用C++写了个GMM(Gaussian mixture model)模型
我自己用C++写了个GMM(Gaussian mixture model)模型 Written for an assignment 之前粗粗了解了GMM的原理,但是没有细看,现在有个Assignmen ...
- 高斯混合模型Gaussian Mixture Model (GMM)
混合高斯模型GMM是指对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和(具体是几个要在模型训练前建立好).每个高斯模型就代表了一个类(一个Cluster).对样本中的数 ...
- Gaussian Mixture Models and the EM algorithm汇总
Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 ...
随机推荐
- 文字变图片——GitHub 热点速览 v.21.14
作者:HelloGitHub-小鱼干 程序的力量,在 deep-daze 体现得淋漓尽致,你用一句话描述下你的图片需求,它就能帮你生成对应图片.同样的,appsmith 的力量在于你只要拖拽即可得到一 ...
- kubernetes1.17.2结合ceph13.2.8部署gitlab12.1.6
[root@bs-k8s-ceph ~]# ceph -s cluster: id: 11880418-1a9a-4b55-a353-4b141e2199d8 health: HEALTH_OK se ...
- Python中切片的应用
Python中切片的应用 Python中可以通过切片实现对列表或者字符串取指定范围的操作,实际就是通过对列表或者字符串通过索引进行操作. 具体细节点击廖雪峰Python教程,其中的课后小问题在此记录下 ...
- OO_Unit1总结
OO的第一单元作业告一段落,这周是总结而不是码代码,甚至心中有点落空感.OO课给我的一周构建了一个完整的循环,从周二的作业发布到接下来几天的思考和构建程序,再到面向中测进行一部分的bug修复,最后到互 ...
- pandas(1):Pandas文件读取——read_excel()
目录 一.函数原型 二.功能说明 三.常用参数说明 四.总结 一.函数原型 pd.read_excel(io, sheet_name=0, header=0, names=None, index_co ...
- 如何在CSS中映射的鼠标位置,并实现通过鼠标移动控制页面元素效果
映射鼠标位置或实现拖拽效果,我们可以在 JavaScript 中做到这一点.但实际上,在CSS中有更加简洁的方法,我们可以在不使用JavaScript 的情况下,仍然可以实现相同的功能! 只使用CSS ...
- java多种文件复制方式以及效率比较
1.背景 java复制文件的方式其实有很多种,可以分为 传统的字节流读写复制FileInputStream,FileOutputStream,BufferedInputStream,BufferedO ...
- jasypt-spring-boot提示Failed to bind properties
1 问题描述 在Spring Boot中使用jasypt-spring-boot进行加密,但是提示: Description: Failed to bind properties under 'spr ...
- Python:读写文件(I/O) | 组织文件
1. I/O 概述 程序与用户交互涉及到程序的输入输出(I/O) 一种类型是字符串,通过input() 和 print() 函数以及数据类型转换类函数如(int()),实现数据的输入输出. 另一种类 ...
- JDBC_03_反射机制注册驱动
反射机制注册驱动 代码:以类加载的方式注册驱动,因为注册驱动的代码是一个静态代码块,所以用Class.forname()加载该类,静态代码块也会进行加载 import java.sql.*; publ ...