初探DBSCAN聚类算法
DBSCAN介绍
一种基于密度的聚类算法
他最大的优势是可以发现任意形状的聚类簇,而传统的聚类算法只能使用凸的样本聚集类
两个参数:
邻域半径R和最少点数目minpoints。
当邻域半径R内的点的个数大于最少点数目minpoints时,就是密集。
补充:根据经验计算半径R
根据得到的所有点的k-距离集合E,对集合E进行升序排序后得到k-距离集合E’,需要拟合一条排序后的E’集合中k-距离的变化曲线图,然后绘出曲线,通过观察,将急剧发生变化的位置所对应的k-距离的值,确定为半径Eps的值。
3种点的类别:核心点,边界点和噪声点。
邻域半径R内样本点的数量大于等于minpoints的点叫做核心点。不属于核心点但在某个核心点的邻域内的点叫做边界点。既不是核心点也不是边界点的是噪声点。
sklearn实例
官方文档 <---
生成样本点
import numpy as np
import pandas as pd
from sklearn import datasets
%matplotlib inline
X,_ = datasets.make_moons(500,noise = 0.1,random_state=1)
df = pd.DataFrame(X,columns = ['feature1','feature2'])
df.plot.scatter('feature1','feature2', s = 100,alpha = 0.6, title = 'dataset by make_moon')
调用dbscan接口完成聚类
from sklearn.cluster import dbscan
# eps为邻域半径,min_samples为最少点数目
core_samples,cluster_ids = dbscan(X, eps = 0.2, min_samples=20)
# cluster_ids中-1表示对应的点为噪声点
df = pd.DataFrame(np.c_[X,cluster_ids],columns = ['feature1','feature2','cluster_id'])
df['cluster_id'] = df['cluster_id'].astype('i2')
df.plot.scatter('feature1','feature2', s = 100,
c = list(df['cluster_id']),cmap = 'rainbow',colorbar = False,
alpha = 0.6,title = 'DBSCAN cluster result')
自己改的例子,比较好理解
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
%matplotlib inline
#生成数据
X=np.empty((100,2))
X[:,0]=np.random.uniform(0.,100.,size=100)
X[:,1]=0.75*X[:,0]+3+np.random.normal(0,10,size=100)
plt.scatter(X[:,0],X[:,1])
plt.show()
df=pd.DataFrame(X,columns=['feature1','feature2'])
df.plot.scatter('feature1','feature2')
print(df)
#调用DBSCAN接口完成聚类
from sklearn.cluster import dbscan
# eps为邻域半径,min_samples为最少点数目
core_samples,cluster_ids = dbscan(X, eps = 10, min_samples=3)
df = pd.DataFrame(np.c_[X,cluster_ids],columns = ['feature1','feature2','cluster_id'])
# df['cluster_id'] = df['cluster_id'].astype('i2') #这个有啥用啊
df.plot.scatter('feature1','feature2', s = 100,
c = list(df['cluster_id']),cmap = 'rainbow',colorbar = False,
alpha = 0.6,title = 'DBSCAN cluster result')
初探DBSCAN聚类算法的更多相关文章
- 机器学习入门-DBSCAN聚类算法
DBSCAN 聚类算法又称为密度聚类,是一种不断发张下线而不断扩张的算法,主要的参数是半径r和k值 DBSCAN的几个概念: 核心对象:某个点的密度达到算法设定的阈值则其为核心点,核心点的意思就是一个 ...
- 5.机器学习——DBSCAN聚类算法
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类: (2)与K-MEANS比较起来,不需要输入要划分的聚类个数: (3)聚类簇的形状没有偏倚: (4)可以在需要时输入过 ...
- 5.无监督学习-DBSCAN聚类算法及应用
DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1 ...
- 机器学习之DBSCAN聚类算法
可以看该博客:https://www.cnblogs.com/aijianiula/p/4339960.html 1.知识点 """ 基本概念: 1.核心对象:某个点的密 ...
- Python实现DBSCAN聚类算法(简单样例测试)
发现高密度的核心样品并从中膨胀团簇. Python代码如下: # -*- coding: utf-8 -*- """ Demo of DBSCAN clustering ...
- DBSCAN密度聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...
- 【转】DBSCAN密度聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...
- DBSCAN聚类︱scikit-learn中一种基于密度的聚类方式
一.DBSCAN聚类概述 基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现"球形"聚簇的缺点. DBSCAN的核心思想是从某个核心点出发,不断向密 ...
- 用scikit-learn学习DBSCAN聚类
在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit ...
随机推荐
- 搞懂 ZooKeeper 集群的数据同步
本文作者:HelloGitHub-老荀 Hi,这里是 HelloGitHub 推出的 HelloZooKeeper 系列,免费开源.有趣.入门级的 ZooKeeper 教程,面向有编程基础的新手. 项 ...
- 策略枚举:消除在项目里大批量使用if-else的正确姿势
文/朱季谦 想起刚开始接触JAVA编程的时候,若遇到大量流程判断语句,几乎满屏都是if-else语句,多得让自己都忘了哪里是头,哪里是尾,但是,纵然满屏是if-else,但彼时也没有觉得多别扭.等到编 ...
- java例题_50 题目:有五个学生,每个学生有 3 门课的成绩,从键盘输入以上数据(包括学生号,姓名,三门课成 绩),计算出平均成绩,将原有的数据和计算出的平均分数存放在磁盘文件"stud"中。
1 /*50 [程序 50 文件 IO] 2 题目:有五个学生,每个学生有 3 门课的成绩,从键盘输入以上数据(包括学生号,姓名,三门课成 3 绩),计算出平均成绩,将原有的数据和计算出的平均分数存放 ...
- 清明节特辑 |记忆存储、声音还原、性格模仿……AI可以让人类永生吗?
摘要:如果能用AI "复活"逝去的亲人 你愿意吗? 清明节,很少有人会去特地想这样一个问题:我们为什么要给过世的人修墓,然后每年固定的时间去扫墓?当农耕文化的色彩褪去,清明节的祭祀 ...
- C++并发与多线程学习笔记--atomic
std::atomic std::async std::atomic 一般atomic原子操作,针对++,--,+=,^=是支持的,其他结果可能不支持. 注意 std::atomic<int&g ...
- C++并发与多线程学习笔记--async、future、packaged_task、promise
async future packaged_task promise async std:async 是个函数,用来启动一个异步任务,启动起来一个异步任务之后,返回一个std::futre对象,启动一 ...
- sunny图表——NABCD分析
项目 内容 这个作业属于哪个课程 2021春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 团队选题 我在这个课程的目标是 初步获得软件工程师的能力 这个作业在哪个具体方面帮助我实现目标 选 ...
- shell 使用 cat 配合 EOF 创建文件并写入多行内容
之前折腾 GtiHub Actions 想实现提交 issue 后将 issue 的内容生成一个 Markdown 文件提交到仓库,从而实现自动发布到 GitHub Pages 的目的.倒是有一些现成 ...
- (三)LDAP 新增用户
LDAP 新增用户 图一: 图二:LAM 配置 图三: 图四:全局配置 输入LAM控制台的密码,默认是LAM 图五:
- IDEA xml 注解快捷键
注释:CTRL + SHIFT + / 撤销注释:CTRL + SHIFT + \