题意:

      给n个点,每个点必须在一个正方形上,可以在正方向上面边的中点或者是下面边的中点,正方形是和x,y轴平行的,而且所有的点的正方形的边长一样,并且正方形不能相互重叠(边相邻可以),问满足这个要求的正方形的最大边长是多少?

思路:

      点的个数最少是3,所以不存在无穷大的情况,每个点的正方形有两种选择,所以是两种中选一种,每两个点中可能存在某种选择和某种选择冲突的情况,那么好办了,是不是就是夫妻参加晚会只能去一个但是一些人之间有矛盾不能同时去的变形?直接就是2-sat,至于答案是输出最大的边长,这个好办,直接二分边长,然后每一步都是2-sat判断是否可行就ok了。


#include<stack>
#include<stdio.h>
#include<string.h> #define N_node 200 + 10
#define N_edge 100000 + 100 using namespace std; typedef struct
{
int to ,next;
}STAR; typedef struct
{
double x ,y;
}NODE; NODE node[N_node];
STAR E1[N_edge] ,E2[N_edge];
int list1[N_node] ,list2[N_node] ,tot;
int Belong[N_node] ,mark[N_node] ,CNT;
stack<int>mysk; void add(int a ,int b)
{
E1[++tot].to = b;
E1[tot].next = list1[a];
list1[a] = tot; E2[tot].to = a;
E2[tot].next = list2[b];
list2[b] = tot;
} void DFS1(int s)
{
mark[s] = 1;
for(int k = list1[s] ;k ;k = E1[k].next)
{
int to = E1[k].to;
if(!mark[to]) DFS1(to);
}
mysk.push(s);
} void DFS2(int s)
{
Belong[s] = CNT;
mark[s] = 1;
for(int k = list2[s] ;k ;k = E2[k].next)
{
int to = E2[k].to;
if(!mark[to]) DFS2(to);
}
} double minn(double x ,double y)
{
return x < y ? x : y;
} double maxx(double x ,double y)
{
return x > y ? x : y;
} bool jude(NODE a ,NODE b ,double l)
{
double s ,x ,z ,y;
s = minn(a.y + l ,b.y + l);
y = minn(a.x + l ,b.x + l);
x = maxx(a.y ,b.y);
z = maxx(a.x ,b.x);
return s > x && y > z; } bool J(int n ,int nowl)
{
int i ,j ,a1 ,a2 ,b1 ,b2;
NODE t1 ,t2;
double r = nowl * 1.0 / 2;
memset(list1 ,0 ,sizeof(list1));
memset(list2 ,0 ,sizeof(list2));
tot = 1;
for(i = 1 ;i <= n ;i ++)
for(j = i + 1 ;j <= n ;j ++)
{
a1 = i * 2 ,b1 = i * 2 + 1;
a2 = j * 2 ,b2 = j * 2 + 1; //上上
t1.x = node[i].x - r ,t1.y = node[i].y;
t2.x = node[j].x - r ,t2.y = node[j].y;
if(jude(t1 ,t2 ,nowl * 1.0)) add(a1 ,a2 ^ 1) ,add(a2 ,a1 ^ 1);
//上下
t1.x = node[i].x - r ,t1.y = node[i].y;
t2.x = node[j].x - r ,t2.y = node[j].y - r * 2;
if(jude(t1 ,t2 ,nowl * 1.0)) add(a1 ,b2 ^ 1) ,add(b2 ,a1 ^ 1);
//下上
t1.x = node[i].x - r ,t1.y = node[i].y - r * 2;
t2.x = node[j].x - r ,t2.y = node[j].y;
if(jude(t1 ,t2 ,nowl * 1.0)) add(b1 ,a2 ^ 1) ,add(a2 ,b1 ^ 1);
//下下
t1.x = node[i].x - r ,t1.y = node[i].y - r * 2;
t2.x = node[j].x - r ,t2.y = node[j].y - r * 2;
if(jude(t1 ,t2 ,nowl * 1.0)) add(b1 ,b2 ^ 1) ,add(b2 ,b1 ^ 1);
}
memset(mark ,0 ,sizeof(mark));
while(!mysk.empty()) mysk.pop();
n *= 2;
for(i = 1 ;i <= n ;i ++)
if(!mark[i]) DFS1(i);
CNT = 0;
memset(mark ,0 ,sizeof(mark));
while(!mysk.empty())
{
int xin = mysk.top();
mysk.pop();
if(mark[xin]) continue;
CNT ++;
DFS2(xin);
}
int mk = 0;
for(i = 1 ;i <= n ;i += 2)
if(Belong[i] == Belong[i^1])
{
mk = 1;
break;
}
return !mk;
} int main ()
{
int t ,n ,i ,j;
scanf("%d" ,&t);
while(t--)
{
scanf("%d" ,&n);
for(i = 1 ;i <= n ;i ++)
scanf("%lf %lf" ,&node[i].x ,&node[i].y);
int low = 0 ,up = 20000 + 100 ,mid ,ans = 0;
while(low <= up)
{
mid = (low + up) >> 1;
if(J(n ,mid)) ans = mid ,low = mid + 1;
else up = mid - 1;
}
printf("%d\n" ,ans);
}
return 0;
}

POJ2296二分2sat的更多相关文章

  1. HDU 3622 Bomb Game(二分+2SAT)

    题意:有一个游戏,有n个回合,每回合可以在指定的2个区域之一放炸弹,炸弹范围是一个圈,要求每回合的炸弹范围没有重合.得分是炸弹半径最小的值.求可以得到的最大分数. 思路:二分+2SAT. 二分炸弹范围 ...

  2. hdu 3622 二分+2-sat

    /* 二分+2-sat 题意:在一个二维平面上给你n个炸弹,和2*n个位置,每一行的两个位置只能有一个放炸弹 现在炸弹爆炸有一个半径,当炸弹爆炸时两个炸弹的半径化成的圆不能相交,求最大半径 二分半径, ...

  3. hdu1816 + POJ 2723开锁(二分+2sat)

    题意:      有m层门,我们在最外层,我们要一层一层的进,每一层上有两把锁,我们只要开启其中的一把们就会开,我们有n组钥匙,每组两把,我们只能用其中的一把,用完后第二把瞬间就会消失,问你最多能开到 ...

  4. hdu 3622 Bomb Game(二分+2-SAT)

    Bomb Game Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. POJ 2296 二分+2-sat

    题目大意: 给定n个点,给每个点都安排一个相同的正方形,使这个点落在正方形的下底边的中间或者上底边的中间,并让这n个正方形不出现相互覆盖,可以共享同一条边,求 这个正方形最大的边长 这里明显看出n个点 ...

  6. 【UVALive - 3211】Now or later (二分+2-SAT)

    题意: 有n架飞机需要着陆.每架飞机有两种选择,早着陆或者晚着陆,二选其一.现在为了保证飞机的着陆安全,要求两架着陆的飞机的时间间隔的最小值达到最大. 分析: 最小值最大问题我们想到二分答案.对于猜测 ...

  7. poj 2723 二分+2-sat判定

    题意:给出n对钥匙,每对钥匙只能选其中一个,在给出每层门需要的两个钥匙,只要一个钥匙就能开门,问最多能到哪层. 思路:了解了2-SAT判定的问题之后主要就是建图的问题了,这里建图就是对于2*n个钥匙, ...

  8. HDU1816(二分+2-SAT)

    Get Luffy Out * Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  9. HDU1815(二分+2-SAT)

    Building roads Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. 【粉丝问答10】C语言关键字static的使用详解

    视频地址:https://www.ixigua.com/6935761378816819748 粉丝提问 粉丝问题,总结一下: 关键字static的使用方法. 要想搞清楚关键字static的使用方法, ...

  2. Azure Front Door(一)为基于.net core 开发的Azure App Service 提供流量转发

    一,引言 之前我们讲解到使用 Azure Traffic Manager.Azure LoadBalancer.Azure Application Gateway,作为项目的负载均衡器来分发流量,转发 ...

  3. 设计模式之抽象工厂模式(Abstract Factory Pattern)

    一.抽象工厂模式的由来 抽象工厂模式,最开始是为了解决操作系统按钮和窗体风格,而产生的一种设计模式.例如:在windows系统中,我们要用windows设定的按钮和窗体,当我们切换Linux系统时,要 ...

  4. 爬虫必知必会(4)_异步协程-selenium_模拟登陆

    一.单线程+多任务异步协程(推荐) 协程:对象.可以把协程当做是一个特殊的函数.如果一个函数的定义被async关键字所修饰.该特殊的函数被调用后函数内部的程序语句不会被立即执行,而是会返回一个协程对象 ...

  5. 文本编辑工具 Vim与压缩打包

    vim一共有3种模式:一般模式.编辑模式和命令模式 一般模式下的移动光标 光标向左移动:h或者向左的方向键 光标向右移动:l或者向右的方向键光标向上移动:k或者向上的方向键光标向下移动:j或者向下的方 ...

  6. Git修改用户名、邮箱和密码

    $ git config --global --replace-all user.name "要修改的用户名" $ git config --global --replace-al ...

  7. 5、Spring教程之依赖注入

    概念 依赖注入(Dependency Injection,DI). 依赖 : 指Bean对象的创建依赖于容器 . Bean对象的依赖资源 . 注入 : 指Bean对象所依赖的资源 , 由容器来设置和装 ...

  8. python编写自己的base64加解密工具

    0x00 Base64编码的用途 在网络传输中,不是所的的内容都是可打印字符,其中绝大多数数据是不可见字符,base64可以基于64个可打印字符来表示这些带有不可打印字符的传输数据. 0x01 Bas ...

  9. 汇编 JCC指令表

    JCC指令 中文含义 英文原意 检查符号位 典型c应用 JZ/JE 若为0则跳转:若相等则跳转 jump if zero;jump if equal ZF=1 if (i == j);if (i == ...

  10. python3表格数据处理

    技术背景 数据处理是一个当下非常热门的研究方向,通过对于大型实际场景中的数据进行建模,可以用于预测下一阶段可能出现的情况.比如我们有过去的2002年-2018年的黄金价格的数据: 该数据来源于Gite ...