简介

广播描述的是NumPy如何计算不同形状的数组之间的运算。如果是较大的矩阵和较小的矩阵进行运算的话,较小的矩阵就会被广播,从而保证运算的正确进行。

本文将会以具体的例子详细讲解NumPy中广播的使用。

基础广播

正常情况下,两个数组需要进行运算,那么每个数组的对象都需要有一个相对应的值进行计算才可以。比如下面的例子:

a = np.array([1.0, 2.0, 3.0])
b = np.array([2.0, 2.0, 2.0])
a * b
array([ 2., 4., 6.])

但是如果使用Numpy的广播特性,那么就不必须元素的个数准确对应。

比如,我们可以讲一个数组乘以常量:

a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([ 2., 4., 6.])

下面的例子和上面的例子是等价的,Numpy会自动将b进行扩展。

NumPy足够聪明,可以使用原始标量值而无需实际制作副本,从而使广播操作尽可能地节省内存并提高计算效率。

第二个示例中的代码比第一个示例中的代码更有效,因为广播在乘法过程中移动的内存更少(b是标量而不是数组)。

广播规则

如果两个数组操作,NumPy会对两个数组的对象进行比较,从最后一个维度开始,如果两个数组的维度满足下面的两个条件,我们就认为这两个数组是兼容的,可以进行运算:

  1. 维度中的元素个数是相同的
  2. 其中一个维数是1

如果上面的两个条件不满足的话,就会抛出异常: ValueError: operands could not be broadcast together。

维度中的元素个数是相同的,并不意味着要求两个数组具有相同的维度个数。

比如表示颜色的256x256x3 数组,可以和一个一维的3个元素的数组相乘:

Image  (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3

相乘的时候,维度中元素个数是1的会被拉伸到和另外一个维度中的元素个数一致:

A      (4d array):  8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5

上面的例子中,第二维的1被拉伸到7,第三维的1被拉伸到6,第四维的1被拉伸到5。

还有更多的例子:

B      (1d array):      1
Result (2d array): 5 x 4 A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5 x 4 A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array): 15 x 3 x 5 A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): 15 x 3 x 5 A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 15 x 3 x 5

下面是不匹配的例子:

A      (1d array):  3
B (1d array): 4 # trailing dimensions do not match A (2d array): 2 x 1
B (3d array): 8 x 4 x 3 # second from last dimensions mismatched

再举个实际代码的例子:

>>> x = np.arange(4)
>>> xx = x.reshape(4,1)
>>> y = np.ones(5)
>>> z = np.ones((3,4)) >>> x.shape
(4,) >>> y.shape
(5,) >>> x + y
ValueError: operands could not be broadcast together with shapes (4,) (5,) >>> xx.shape
(4, 1) >>> y.shape
(5,) >>> (xx + y).shape
(4, 5) >>> xx + y
array([[ 1., 1., 1., 1., 1.],
[ 2., 2., 2., 2., 2.],
[ 3., 3., 3., 3., 3.],
[ 4., 4., 4., 4., 4.]]) >>> x.shape
(4,) >>> z.shape
(3, 4) >>> (x + z).shape
(3, 4) >>> x + z
array([[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.]])

广播还提供了一个非常方便的进行两个1维数组进行外部乘积的运算:

>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[ 1., 2., 3.],
[ 11., 12., 13.],
[ 21., 22., 23.],
[ 31., 32., 33.]])

其中a[:, np.newaxis] 将1维的数组转换成为4维的数组:

In [230]: a[:, np.newaxis]
Out[230]:
array([[ 0.],
[10.],
[20.],
[30.]])

本文已收录于 http://www.flydean.com/07-python-numpy-broadcasting/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

NumPy之:理解广播的更多相关文章

  1. numpy中的广播

    目录 广播的引出 广播的原则 数组维度不同,后缘维度的轴长相符 数组维度相同,其中有个轴为1 参考: 广播的引出  numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import num ...

  2. numpy中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

  3. Numpy中的广播机制,数组的广播机制(Broadcasting)

    这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...

  4. Numpy中的广播原则(机制)

    为了了解这个原则,首先我们来看一组例子: # 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数. In [12]: import numpy as np In [13]: ...

  5. numpy中的广播(Broadcasting)

    Numpy的Universal functions 中要求输入的数组shape是一致的,当数组的shape不相等的时候,则会使用广播机制,调整数组使得shape一样,满足规则,则可以运算,否则就出错 ...

  6. numpy.meshgrid()理解

    本文的目的是记录meshgrid()的理解过程: step1. 通过一个示例引入创建网格点矩阵; step2. 基于步骤1,说明meshgrid()的作用; step3. 详细解读meshgrid() ...

  7. 对numpy.meshgrid()理解

    一句话解释numpy.meshgrid()——生成网格点坐标矩阵.关键词:网格点,坐标矩阵 网格点是什么?坐标矩阵又是什么鬼?看个图就明白了: 图中,每个交叉点都是网格点,描述这些网格点的坐标的矩阵, ...

  8. numpy深入理解剖析

    http://www.scipy-lectures.org/advanced/advanced_numpy/index.html

  9. numpy和tensorflow中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

随机推荐

  1. python plt画图横纵坐标0点重合

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot a ...

  2. MySQL基础知识:MySQL Connection和Session

    在connection的生命里,会一直有一个user thread(以及user thread对应的THD)陪伴它. Connection和Session概念 来自Stackoverflow的一个回答 ...

  3. PureStudy:学科知识分享——个人网站开发全解

    PureStudy:学科知识分享--个人网站开发全解 项目描述 PureStudy,学科知识分享网站. 学生可以使用这个网站,来浏览相应学科的知识点.学习总结,获取相关的资料.此外,他们可以选择上传文 ...

  4. 深度学习---1cycle策略:实践中的学习率设定应该是先增再降

    深度学习---1cycle策略:实践中的学习率设定应该是先增再降 本文转载自机器之心Pro,以作为该段时间的学习记录 深度模型中的学习率及其相关参数是最重要也是最难控制的超参数,本文将介绍 Lesli ...

  5. Simulink中Scope数据保存至Workspace制图

    0 问题 通常情况下,仿真模型中scope波形可编辑程度并不高,尽管高版本MATLAB中已经可以将其直接导出到figure,但效果并不是特别理想.在需要高质量输出波形图场合,就需要将其中数据导出到wo ...

  6. redis安装、配置、启动

    一.redis默认安装位置:/usr/local/bin redis-benchmark:性能测试工具,可以在自己本子运行,看看自己本子性能如何,服务启动起来后执行redis-check-aof:修复 ...

  7. 如何在IDEA中进行时序图分析

    方法一: 使用插件 SequenceDiagram (系统自动生成) 使用方法: 下载插件,我们可以在 Plugins 中找到 选中线程方法名,然后右键就可以创建此方法的时序图了 参数设置 生成效果以 ...

  8. Bounding Volume Hierarchies 加速结构

    背景   光线与物体求交是光线追踪的主要时间瓶颈.   如果不进行优化,则对每条光线,我们都需要遍历场景中的全部物体并求交.而现在想建模一个小物体的表面,往往要几千甚至几万个三角形,一个商业级产品,屏 ...

  9. 承接上一篇,whale系统开篇,聊聊用户认证

    写在前面 上次老猫和大家说过想要开发一个系统,从简单的权限开始做起,有的网友表示还是挺支持的,但是有的网友嗤之以鼻,认为太简单了,不过也没事,简单归简单,主要的还是个人技术的一个整合和实战. 没错,系 ...

  10. 自动化kolla-ansible部署ubuntu20.04+openstack-victoria之基础配置-04

    自动化kolla-ansible部署ubuntu20.04+openstack-victoria之基础配置-04 欢迎加QQ群:1026880196 进行交流学习 近期我发现网上有人转载或者复制原创博 ...