sro_ptx_orz

qwq算是一个套路的记录

对于一个有向图来说

如果你要求一个外向生成树的话,那么如果存在一个\(u\rightarrow v\)的边

那么\(a[u][v]--,a[v][v]++\)

对应的去掉第\(i\)行和第\(i\)列的余子式,就是以\(i\)为根的生成树个数。

内向生成树也是同理。所有的反过来即可

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
//#define int long long
#define rint register int
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 310;
const int mod = 10007;
int qsm(int i,int j)
{
int ans=1;
while (j)
{
if (j&1) ans=ans*i%mod;
i=i*i%mod;
j>>=1;
}
return ans;
}
int a[maxn][maxn];
int n,m;
int d[maxn][maxn];
int b[maxn][maxn];
void gauss()
{
int k=1;
int ff=1;
int ans=1;
for (rint i=1;i<=n;++i)
{
int now = k;
while (now<=n && !(a[now][i])) ++now;
if (now==n+1) continue;
if (now!=k) ff*=-1;
for (rint j=1;j<=n;++j) swap(a[now][j],a[k][j]);
int inv = qsm(a[k][i],mod-2);
for (rint j=i+1;j<=n;++j)
{
int t = a[j][i]*inv%mod;
for (rint p=1;p<=n;++p) a[j][p]=(a[j][p]-a[k][p]*t%mod+mod)%mod;
}
++k;
}
for (rint i=1;i<=n;++i) ans=ans*a[i][i]%mod;
if(ff==-1) cout<<mod-ans;
else cout<<ans;
}
signed main()
{
n=read(),m=read();
for (rint i=1;i<=m;++i)
{
int x=read(),y=read();
a[x][x]++;
a[y][x]--;
}
for (rint i=1;i<=n;++i)
for (rint j=1;j<=n;++j) b[i][j]=a[i][j];
for (rint i=1;i<n;++i)
for (rint j=1;j<n;++j)
{
a[i][j]=b[i+1][j+1];
}
n--;
gauss();
return 0;
}

洛谷4455 [CQOI2018]社交网络 (有向图矩阵树定理)(学习笔记)的更多相关文章

  1. BZOJ5297 CQOI2018 社交网络 【矩阵树定理Matrix-Tree】

    BZOJ5297 CQOI2018 社交网络 Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发布一条消息(例如微博.状态.Tweet等 ...

  2. BZOJ5297 [Cqoi2018]社交网络 【矩阵树定理】

    题目链接 BZOJ5297 题解 最近这玩意这么那么火 这题要用到有向图的矩阵树定理 主对角线上对应入度 剩余位置如果有边则为\(-1\),不然为\(0\) \(M_{i,i}\)即为以\(i\)为根 ...

  3. BZOJ5297 CQOI2018社交网络(矩阵树定理)

    板子题. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> # ...

  4. Matrix_tree Theorem 矩阵树定理学习笔记

    Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...

  5. [HEOI2015]小Z的房间(矩阵树定理学习笔记)

    题目描述 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一 ...

  6. 【BZOJ5297】【CQOI2018】社交网络(矩阵树定理)

    [BZOJ5297][CQOI2018]社交网络(矩阵树定理) 题面 BZOJ 洛谷 Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发 ...

  7. 洛谷.3809.[模板]后缀排序(后缀数组 倍增) & 学习笔记

    题目链接 //输出ht见UOJ.35 #include<cstdio> #include<cstring> #include<algorithm> const in ...

  8. 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理

    题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...

  9. [洛谷U22156]未曾届到游览(矩阵树定理)

    题目背景 又到了某任*堂开关中学一年一度的自主招生考试的时间了,在考试完后许多家长决定带着自己的孩子参观一下这所距千年名校还有890周年的百年学校: 题目描述 这所学校的布局非常奇怪,是一个由N 个点 ...

随机推荐

  1. Mysql 日期格式化 复杂日期区间查询

    前言 最近在做项目涉及到Mysql的复杂日期查询,日期查询其实在数据库中查询其实还是用的挺多的,比如查询开始日期到结束日期的区间信息,查询日期小于有效日期的信息,查询当天的日期,明天的日期,做比较等. ...

  2. 理解ASP.NET Core - [03] Dependency Injection

    注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 依赖注入 什么是依赖注入 简单说,就是将对象的创建和销毁工作交给DI容器来进行,调用方只需要接 ...

  3. Baidu初试题分享(Java高级工程师)

    [特别声明:文章仅用来借鉴学习,不用于其他商业化活动] 1.JDK和JRE区别? JDK是整个JAVA的核心,包括了Java运行环境JRE,一堆Java工具和Java基础的类库.通过JDK开发人员将源 ...

  4. 第25篇-虚拟机对象操作指令之putstatic

    之前已经介绍了getstatic与getfield指令的汇编代码执行逻辑,这一篇介绍putstatic指令的执行逻辑,putfield将不再介绍,大家可以自己去研究,相信大家有这个实力. putsta ...

  5. RocketMQ详解(二)安装使用详解

    专题目录 RocketMQ详解(一)原理概览 RocketMQ详解(二)安装使用详解 RocketMQ详解(三)启动运行原理 RocketMQ详解(四)核心设计原理 RocketMQ详解(五)总结提高 ...

  6. axios 取消请求 (如:用户登录失效,阻止其他请求)

    const CancelToken = axios.CancelToken; const source = CancelToken.source(); axios.interceptors.reque ...

  7. java的split方法中的regex参数

    我们需要以|进行分割,为了匹配|本身,正则中采用\|进行转义,而Java中\也表示转义,从java到正则需要必须使用\\|进行转义,即split中的\\表示正则的转义.

  8. 使用Java MVC模式设计一个学生管理系统

    最近在做web实验,要求是用jsp+servlet+mysql实现一个学生管理系统,完成对数据库的增删改查. 效果图:   代码: package dao; import java.util.List ...

  9. 树莓派修改默认pi帐号亲测有效

    # 树莓派修改默认pi帐号亲测有效### 1.我的树莓派机型:3B+,系统:Raspbian桌面标准版,连接的屏幕:电视机..###2.打开树莓派LX终端,快捷键:Ctrl+Alt+t ###3.输入 ...

  10. 【OI】蛇形填数题的深入探究

    题目:在 n×n 方阵里填入 1,2,...n×n, 要求蛇形填数.例如,n=4 时方阵为: 10  11  12  1 9    16  13  2 8    15  14  3 7     6  ...