IEEE 754舍入的问题
写在前面
本文的舍入方法只适用于保留0位或1位小数,个人水平所限,暂时没有发现保留更多小数位的舍入的规律…
IEEE 754的舍入模式
IEEE 754标准提供了2类,5种舍入模式,在默认情况下一般是Round to nearest。
Directed roundings
- Round toward 0
向0舍入,也称截断法
+11.5 | -11.5 |
---|---|
+11.0 | -11.0 |
- Round toward +∞
向正无穷舍入
+11.5 | -11.5 |
---|---|
+12.0 | -11.0 |
- Round toward −∞
向负无穷舍入
+11.5 | -11.5 |
---|---|
+11.0 | -12.0 |
Rounding to nearest
- Round half to even
向最近的偶数舍入
+23.5 | +24.5 | -23.5 | -24.5 |
---|---|---|---|
24 | 24 | -24 | -24 |
- Round half away from zero
向远离0的方向舍入,也称向无穷方向取整
+23.5 | +24.5 | -23.5 | -24.5 |
---|---|---|---|
24 | 25 | -24 | -25 |
下面是个人的理解
名称里的"half"在舍入一组数据才比较好的体现出来,如下面的代码所示
#include <stdio.h>
int
main( int argc, char **argv )
{
printf("%.0lf\n", 20.5);
printf("%.0lf\n", 21.5);
printf("%.0lf\n", 22.5);
printf("%.0lf\n", 23.5);
printf("%.0lf\n", 24.5);
printf("%.0lf\n", 25.5);
printf("%.0lf\n", 26.5);
printf("%.0lf\n", 27.5);
printf("%.0lf\n", 28.5);
printf("%.0lf\n", 29.5);
return 0;
}
vs2010运行结果
gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04) 运行结果
可见vs2010使用的舍入规则是Round half away from zero,gcc使用的是Round half to even。
mingw的gcc运行结果和vs2010一致。
以Ubuntu的运行结果为例,将原数据和舍入后的数据绘制成散点图
可见,原数据中有的数字是向上取,有的向下取。
更准确的说:是一半的数据向上取整,另一半的数据向下取整。
从图中可以看出,舍入后的数据在原数值上下摆动,但总体上与原数据相差无几。
这便是我理解的half的含义:有一半的数据向下取整,同时另一半的数据向上取整。Round half to even 也是统计学里抵抗误差常用的舍入策略。
下面我们来看看直接四舍五入的散点图
可见,直接四舍五入,所有数据都是向上取整的,舍入误差累积后,舍入后的数据总体上就偏离了原数据。
摘录《深入理解计算机系统》第二章 信息的表示和处理
向偶数舍入初看上去好像是个相当随意的目标——有什么理由偏向取偶数呢?为什么不始终把位于两个可表示的值的中间的值都向上舍入呢?使用这种方法的一个问题就是很容易假想到这样的情景:这种方法舍入一组数据,会在计算这些值的平均数中引入统计偏差。我们采用这种方式舍入得到的一组数的平均值将比这些数本身的平均值略高一些。相反,如果我们总是把两个可表示值中间的数字向下舍入,那么舍入后的一组数的平均值将比这些数本身的平均值略低一些。向偶数舍入在大多数现实情况下避免了这种统计偏差。在50%的时间里,它将向上舍入,而在50%的时间里,它将向下舍入。
舍入的具体流程 以gcc为例
#include <stdio.h>
int
main( int argc, char **argv )
{
printf("%.1lf\n", 3.250);
printf("%.1lf\n", 3.251);
return 0;
}
数值 | 3.2 | 3.250 | 3.3 |
---|---|---|---|
误差 | 0.05 | 0.05 |
两者误差相同,按照Round half to even,选择最近的偶数3.2
数值 | 3.2 | 3.251 | 3.3 |
---|---|---|---|
误差 | 0.051 | 0.049 |
选择误差小的3.3
参考链接
https://my.oschina.net/aquar/blog/731999
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Rounding
https://www.zhihu.com/question/68131179/answer/261539674
http://m.newsmth.net/article/EnglishWorld/40696
IEEE 754舍入的问题的更多相关文章
- IEEE 754 浮点数的四种舍入方式
四种舍入方向: 向最接近的可表示的值:当有两个最接近的可表示的值时首选"偶数"值:向负无穷大(向下):向正无穷大(向上)以及向0(截断). 说明:默认模式是最近舍入(Round t ...
- IEEE二进制浮点数算术标准(IEEE 754)
整理自IEEE 754 IEEE二进制浮点数算术标准(IEEE 754)是20世纪80年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算器所采用.这个标准定义了表示浮点数的格式(包括负零-0) ...
- 【转】浮点数与IEEE 754
http://www.cnblogs.com/kingwolfofsky/archive/2011/07/21/2112299.html 浮点数 1. 什么是浮点数 在计算机系统的发展过程中,曾经 ...
- IEEE 754二进制浮点数算术标准
可能很多人都遇到过浮点数精度丢失的问题,下面以JavaScript为例. 1 - 0.9 = 0.09999999999999998 纳尼,不应该是0.1么,怎么变成0.099999999999999 ...
- IEEE 754标准--维基百科
IEEE二进制浮点数算术标准(IEEE 754) 是20世纪80年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算器所采用.这个标准定义了表示浮点数的格式(包括负零-0)与反常值(denorm ...
- IEEE 754 浮点数加减运算
电子科技大学 - 计算机组成原理 小数的十进制和二进制转换 移码 定义:[X]移 = X + 2n ( -2n ≤ X < 2n ) X为真值,n为整数的位数 数值位和X的补码相同,符号位与补码 ...
- 玉伯的一道课后题题解(关于 IEEE 754 双精度浮点型精度损失)
前文 的最后给出了玉伯的一道课后题,今天我们来讲讲这题的思路. 题目是这样的: Number.MAX_VALUE + 1 == Number.MAX_VALUE; Number.MAX_VALUE + ...
- IEEE 754标准
IEEE 754-1985 was an industry standard for representing floating-point numbers in computers, officia ...
- 浮点数在计算机内存中的表示(IEEE 754规定1位是符号位,8位是指数,剩下的23位为有效数字)
本文转载自:阮一峰的博客,http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.html 张玉彬的博客 h ...
随机推荐
- 学习小计: Kaggle Learn Embeddings
Embedding表示map f: X(高维) -> Y(低维),减小数据维度,方便计算+提高准确率. 参看Kaggle Learn:https://www.kaggle.com/learn/e ...
- VS2017 提示找不到某个.dll库,或某个dll库丢失,原因
可能因为那个dll的确不存在 可能因为需要在环境变量->系统环境变量->添加该dll所在目录
- Notepad++插件推荐和下载
Notepad++因为其强劲的插件支持,越来越受到编程爱好者的喜欢.很多优秀的插件现在已经默认安装了,下面是100多款受欢迎的Notepad++插件的介绍和下载地址. XML Tools 这个插件是包 ...
- 快速入门PaddleOCR,并试用其开发一个搜题小工具
介绍 PaddleOCR 是一个基于百度飞桨的OCR工具库,包含总模型仅8.6M的超轻量级中文OCR,单模型支持中英文数字组合识别.竖排文本识别.长文本识别.同时支持多种文本检测.文本识别的训练算法. ...
- Mybatis-Plus增强包
简介 本框架(Gitee地址 )结合公司日常业务场景,对Mybatis-Plus 做了进一步的拓展封装,即保留MP原功能,又添加更多有用便捷的功能.具体拓展体现在数据自动填充(类似JPA中的审计).关 ...
- NOIP模拟16:「Star Way To Heaven·God Knows·Loost My Music」
T1:Star Way To Heaven 基本思路: 最小生成树. 假如我们将上边界与下边界看作一个点,然后从上边界经过星星向下边界连边,会发现,他会形成一条线将整个矩形分为左右两个部分. ...
- 解决CSDN文章下载后,依然请求跳转至首页出错的问题
1. 搜索关键字:"onerror" 然后找到如下所示代码: <div style="display:none;"> <img ...
- MySQL实战45讲(01--05)-笔记
目录 MySQL复习 01 | 基础架构:一条SQL查询语句是如何执行的? 连接器 查询缓存 分析器 优化器 执行器 02 | 日志系统:一条SQL更新语句是如何执行的? 重要的日志模块:redo l ...
- Java一般命名规范
一.项目名称 最好用英文,所有单词全部用小写,如testjavaproject.studentmanagement等,当然也也可以用中文,如"学生管理系统"等. 二.Java pr ...
- 远程桌面连接(mstsc)全攻略
打算从今天开始,写一写我经常用的,有长时间使用经验的东西,与大家分享,就从mstsc开始吧! mstsc应该是在Windows中,除了calc.cmd.notepad.mspaint,我使用率最高的系 ...