qwq真的是一道好题qwq自己做基本是必不可能做出来的。

首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题。

首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同的方案的,那统计起来其实方便很多。

首先我们发现,对于\(i\)这个数,他可以拆出来\([1,m]\)任何一个数,接在对应的\(f[i-1]到f[i-m]\)

也就是说\(f[i]=f[i-1]+f[i-2]+f[i-3]....f[i-m]\)

qwq那我们可以构造出转移矩阵

以\(m=3\)为栗子

0 0 1
1 0 1
0 1 1

我们假设这个转移矩阵是\(a\)

那我们就可以直接将每一个\(f[i]\)转化成,初始矩阵\(\times a^i\)的形式。

qwq但这个离我们求出来\(g\)数组还差好远。

由于\(g\)数组涉及\(f\)数组的拆分形式。

那我们不妨观察一下\(f[i+j]\)等于多少。

\[f[i+j]=a^{i+j} = a^i \times a^j = f[i]*f[j]
\]

那么我们就可以直接用矩阵乘法的形式来表示拼接了。

那g数组的转移式子,也就比较好求了

\[g[i]=\sum_{j=0}^{i-1}g[j]*d[j+1][i]
\]

其中\(d[j+1][i]\)表示\([j+1,i]\)这些数从左到右排起来,组成的数的\(f\)的对应矩阵是多少。

这里转移式子的意义是,我们对于当前位,考虑枚举所有他的后缀,和前面任意的\(f[i]\)的值乘起来,都是一个合法的方案(原理根据上面对\(f[i+j]\)的讨论)。

之所以能直接用\(g\)数组来乘转移矩阵而不是一个一个分别乘。

是因为同大小的矩阵具有乘法分配律!

所以\(g\)也就可以直接和对应矩阵乘起来了

那么最后的\(ans\),就应该是初始矩阵

还是以\(m=3\)为例

0 0 1
0 0 0
0 0 0

乘上\(g[n]\)之后第一行最后一个元素的值,也就相当于\(g[n]\)的第m行m列的那个元素。

现在整个问题的瓶颈到了怎么求\(d\)数组,由于数值太大,所以我们没有办法直接快速乘。

qwq

现在考虑递推

我们令\(b[i][j]\)表示\(i\times 10^j\)的对应的f的转移矩阵是多少。

比较容易发现这个数组还是很好递推的。

每次\(b[i][j]=qsm(b[i][j-1],10)\)

那知道这个数组,其实\(d\)数组也就不难推了

我们首先令\(d[i][i]=b[s[i]-'0'][0]\)

那么\(d[j][i]=d[j+1][i]*b[s[j]-'0'][i-j]\)

那么到这里这个问题也就基本解决了。

感觉细节真的是很多。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 7;
const int mod = 998244353;
struct Ju{
int x,y;
int a[maxn][maxn];
Ju operator * (Ju b)
{
Ju ans;
memset(ans.a,0,sizeof(ans.a));
ans.x=x;
ans.y=b.y;
for (int i=1;i<=ans.x;i++)
for (int j=1;j<=ans.y;j++)
for (int k=1;k<=y;k++)
ans.a[i][j]=(ans.a[i][j]+a[i][k]*b.a[k][j]%mod)%mod;
return ans;
}
Ju operator +(Ju b)
{
Ju ans;
memcpy(ans.a,a,sizeof(ans.a));
ans.x=x;
ans.y=y;
for (int i=1;i<=x;i++)
for (int j=1;j<=y;j++)
ans.a[i][j]=(ans.a[i][j]+b.a[i][j])%mod;
return ans;
}
};
Ju qsm(Ju i,int j)
{
Ju ans;
memset(ans.a,0,sizeof(ans.a));
ans.x=i.x;
ans.y=i.y;
for (int p=1;p<=i.x;p++) ans.a[p][p]=1;
while (j)
{
if (j&1) ans=ans*i;
i=i*i;
j>>=1;
}
return ans;
}
char s[2020];
int n,m;
Ju a[510][510]; //a[i][j]表示,区间[i,j]的数的矩阵是多少
Ju ymh[510][510]; //ymh[i][j]表示,i*10^j的矩阵是多少
Ju lyf;
Ju g[510];//大小相同的矩阵乘法具有分配律
void init() //初始化矩阵的行和列
{
for (int i=0;i<=9;i++)
for (int j=0;j<=n;j++)
{
ymh[i][j].x=ymh[i][j].y=m;
}
for (int i=0;i<=n;i++)
for (int j=0;j<=n;j++)
{
a[i][j].x=a[i][j].y=m;
}
for (int i=0;i<=n;i++) g[i].x=g[i].y=m;
}
void print(Ju a)
{
cout<<"*******"<<endl;
cout<<a.x<<" "<<a.y<<endl;
for (int i=1;i<=a.x;i++)
{
for (int j=1;j<=a.y;j++)
cout<<a.a[i][j]<<" ";
cout<<endl;
}
}
signed main()
{
init();
scanf("%s",s+1);
m=read();
n=strlen(s+1);
init();
ymh[0][0].x=m;
ymh[0][0].y=m;
for (int i=1;i<=m;i++) ymh[0][0].a[i][i]=1; //设置初始矩阵
lyf.x=m;
lyf.y=m;
for (int i=1;i<m;i++) lyf.a[i+1][i]=1;
for (int i=1;i<=m;i++) lyf.a[i][m]=1; //设置转移矩阵 for (int i=1;i<=9;i++)
ymh[i][0]=ymh[i-1][0]*lyf; //先递推出来所有i*10^0的答案
for (int i=0;i<=9;i++)
for (int j=1;j<=n;j++)
ymh[i][j]=qsm(ymh[i][j-1],10); //预处理出来所有的值
// print(ymh[1][0]);
// print(ymh[0][0]);
for (int i=n;i>=1;i--)
{
a[i][i]=ymh[s[i]-'0'][0];
for (int j=i-1;j>=1;j--)
{
a[j][i]=ymh[s[j]-'0'][i-j]*a[j+1][i];
}
} //预处理a数组
//print(a[1][1]);
g[0]=ymh[0][0];
for (int i=1;i<=n;i++)
{
for (int j=i-1;j>=0;j--)
g[i]=g[i]+(g[j]*a[j+1][i]); //计算g,因为g是个sigma的数组,而且同大小矩阵乘法具有分配律,所以这句话表示,当前[j+1,i]这个串可以和之前任意一种组合,组合成一个串。
}
int ans=0;
//print(g[n]);
//for (int i=1;i<=m;i++) ans=(ans+g[n].a[1][i])%mod;
//cout<<ans<<endl;
cout<<g[n].a[m][m]<<endl;
return 0;
}

洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)的更多相关文章

  1. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  2. bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】

    首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式 ...

  3. [HAOI2015]数字串拆分

    题目描述 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导0),将他们加 ...

  4. BZOJ4037:[HAOI2015]数字串拆分——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4037 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时 ...

  5. bzoj4037 [HAOI2015]数字串拆分

    Description 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导 ...

  6. BZOJ 4037 [HAOI2015]数字串拆分 ——动态规划

    拆分的情况下,发现f数组本身并不是很好递推. 因为f(123)=f(123)/f(12+3)/f(1+2+3). 然后考虑f可以怎么表示f(n)=a0*M^n M为转移矩阵. 然后发现 f(x+y)= ...

  7. 【LOJ】#2128. 「HAOI2015」数字串拆分

    题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...

  8. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  9. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

随机推荐

  1. jquery mobile常用的data-role类型

    data-role参数表: page        页面容器,其内部的mobile元素将会继承这个容器上所设置的属性 header     页面标题容器,这个容器内部可以包含文字.返回按钮.功能按钮等 ...

  2. 状态码1xx-6xx的含义

    1xx (临时响应)表示临时响应并需要请求者继续执行操作的状态代码. 100 (继续) 请求者应当继续提出请求. 服务器返回此代码表示已收到请求的第一部分,正在等待其余部分. 101 (切换协议) 请 ...

  3. Ansible部署及配置介绍

    原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 Ansible的安装部署 1.1 PIP方式 1.2 YUM方式 二 Ansi ...

  4. Spring boot中注册Servlet

    Spring boot中注册Servlet 如何在spring boot项目中注册Servlet呢? 如何在spring boot项目中注册Servlet呢? 由于没有web.xml,无法直接在xml ...

  5. Python脚本导出AWS EC2资源清单

    环境需求 单位现在每隔一段时间需要核对一下 AWS 正在运行的 EC2 资源清单,为了避免核对失误以及重复性的工作,打算用脚本来解决这一重复性的工作.大概思路为 通过 AWS AK.SK 来索取 AW ...

  6. JDK1.8源码(二)——java.lang.Integer类

    一.初识 1.介绍 int 是Java八大基本数据类型之一,占据 4 个字节,范围是 -2^31~2^31 - 1,即 -2147483648~2147483647.而 Integer 是 int 包 ...

  7. Junit5快速入门指南-3

    Fixtures 是测试中非常重要的一部分.他们的主要目的是建立一个固定/已知的环境状态以确保 测试可重复并且按照预期的方式运行.比如在app测试中 基类@BeforeClass 配置初始化,初始化d ...

  8. 将JAVA API接口 改写成 Python

    AsinSeedApi 不写注释的程序员-加密 将JAVA API接口 改写成 Python JAVA import com.alibaba.fastjson.JSON; import com.ali ...

  9. 加载映射文件几种方式和mapper接口注解执行sql语句

    一.加载映射文件几种方式 二.mapper接口注解执行sql语句 就将xml中的sql语句放到注解的括号中就可以,一般只用于简单的sql语句合适:

  10. 以人为本打造“超职季”IP,58同城精准匹配企业招聘与打工人

    撰文 |懂懂 编辑 | 秦言 来源:懂懂笔记 在大手笔培育IP的背后,58同城是如何考量的? 在餐厅当服务员的李阿姨今年54岁了.她的女儿马上研究生毕业,非常喜欢陈伟霆,手机屏保都是他.李阿姨没想到, ...