BUG 记录:移位运算与扩展欧几里得算法
BUG 记录:移位运算与扩展欧几里得算法
起因
上个月就开始打算用C++写一个ECC的轮子(为什么?折磨自己呗!),奈何自己水平有点差,拖到现在才算写完底层的大数运算。在实现欧几里得算法的时候,我开始纠结了...
欧几里得算法的两种实现
耳熟能详的实现方案
这个实现只要了解过欧几里得算法的同学都很清楚,我把维基百科上的代码粘贴到这里,最开始我也是按照这样的方式写出来的代码,没过几个测试,bug就出来了。
def ext_euclid(a, b):
old_s,s=1,0
old_t,t=0,1
old_r,r=a,b
if b == 0:
return 1, 0, a
else:
while(r!=0):
q=old_r//r
old_r,r=r,old_r-q*r
old_s,s=s,old_s-q*s
old_t,t=t,old_t-q*t
return old_s, old_t, old_r
乍一看,这个实现真是天衣无缝,毫无破绽,但是要是实现大数运算的时候,如果要是这么想的话,就太naive了。
矩阵计算欧几里得算法
原理我就不抄了,刚学会的,链接在此
https://www.wikiwand.com/zh/輾轉相除法#/矩阵法
这两个方法看起来其实是等价的,第二个方法无非就是拿矩阵表示了一下,有同学会问了,这能有啥区别?
书本上的方法的问题所在
其实最开始的时候,我在我的大数系统实现的时候,我就意识到了有可能会有这样的问题:
注意上面代码中循环中的操作,减法?乘法?
q*s
和q*t
其实在a
和b
很大的时候有溢出的风险。
注意到这个问题之后,我用python实现了一下,果然!这个操作会溢出!又用python实现了一个matrix,这回没有这个问题。(我把代码放在最后)
结论
仔细看看这两种方法,第二种方法其实是一种推迟了减法的做法。矩阵上的元素始终在增长,且不会超过a
和b
的最高位,代价就是多了两个需要存储的元素。
移位运算坑死我这样的小白
我修改了上面的代码,又测试了一下,还是不对,我慌了,最终使用中间量对比大法,一步一步去对比,人肉检查,我发现了问题所在。
实现gcd免不了带余除法(欧几里得除法)的操作,对于除法,我本来还想优化优化,但是奈何水平有点捉急,最后写了个textbook division(列等式减法那种),里面的当然有移位运算了,就是这个移位运算搞我。
void NB::rshift(int bitnum){
/* calculate block num and remain num */
int blocknum = bitnum/64;
int remainnum = bitnum%64;
WORD tmp1 = 0;
WORD tmp2 = 0;
/* first step , move the blocknum */
for(int i=0;i<MAX_number_word;i++){
if(i-blocknum>=0){
this->val[i-blocknum] = this->val[i];
}
}
for(int i=MAX_number_word-1;i>=MAX_number_word-blocknum;i--){
this->val[i] = 0;
}
/* second step , move the remainnum */
for(int i=MAX_number_word-1;i>=0;i--){
tmp1 = this->val[i]<<(WORDSIZE-remainnum);
this->val[i] = this->val[i]>>remainnum;
this->val[i] += tmp2;
tmp2 = tmp1;
}
}
毫无破绽的代码(划掉,并不是)。注意第二步写移位运算的时候有一句:
tmp1 = this->val[i]<<(WORDSIZE-remainnum);
当remainnumd=0
,就会出现移位WORDSIZE
的情况,聪明的小伙伴都知道,这种情况在C++标准里是没有定义的,即
移位运算的右操作符的大小应该大于等于0小于左操作符的最大位数,其余情况是未定义的。
所以不太聪明但是有效的做法->
/* second step , move the remainnum */
for(int i=MAX_number_word-1;i>=0;i--){
if(remainnum==0){
tmp1 = 0;
}else{
tmp1 = this->val[i]<<(WORDSIZE-remainnum);
}
this->val[i] = this->val[i]>>remainnum;
this->val[i] += tmp2;
tmp2 = tmp1;
}
结束
表达了对眼前有码,心中无码的境界的期待。
BUG 记录:移位运算与扩展欧几里得算法的更多相关文章
- ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)
1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...
- 『扩展欧几里得算法 Extended Euclid』
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...
- 扩展欧几里得算法详解(exgcd)
一.前言 本博客适合已经学会欧几里得算法的人食用~~~ 二.扩展欧几里得算法 为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a.b是整数,那么一定存在整数x.y使得$ ...
- 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...
- 扩展欧几里得算法(extgcd)
相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...
- noip知识点总结之--欧几里得算法和扩展欧几里得算法
一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a ...
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- vijos1009:扩展欧几里得算法
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...
- 浅谈扩展欧几里得算法(exgcd)
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...
随机推荐
- tomcat拦截特殊字符报400,如 "|" "{" "}" ","等符号的解决方案
最近在做一个项目,需要对外暴露两个接口接收别人给的参数,但是有一个问题就是对方的项目是一个老项目,在传参数的时候是将多个字符放在一个参数里面用"|"进行分割,然而他们传参数的时候又 ...
- windows Visual Studio 上安装 CUDA【转载】
原文 : http://blog.csdn.net/augusdi/article/details/12527497 前提安装: Visual Studio 2012 Visual Assist X ...
- HTML5 之 FileReader 的使用 (网页上图片拖拽并且预显示可在这里学到) [转载]
转载至 : http://www.360doc.com/content/14/0214/18/1457948_352511416.shtml FileReader 资料(英文) : https://d ...
- Oracle中建表及表操作
一.创建表 Oracle中的建表语句:create table 表名( 字段名1 数据类型 列属性,字段名2 数据类型 列属性,...... ) 如:创建表OA_DM.DM_GY_USER https ...
- 事务(@Transactional注解)的用法和实例
参数 @Transactional可以配制那些参数及以其所代表的意义: 参数 意义 isolation 事务隔离级别 propagation 事务传播机制 readOnly 事务读写性 noRollb ...
- Linux基础命令---mysqlshow显示数据库
mysqlshow mysqlshow是一个客户端的程序,它可以显示数据库的信息.表信息.字段信息. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora. 1.语法 ...
- Linux基础命令---wget下载工具
wget wget是一个免费的文件下载工具,可以从指定的URL下载文件到本地主机.它支持HTTP和FTP协议,经常用来抓取大量的网页文件. 此命令的适用范围:RedHat.RHEL.Ubuntu.Ce ...
- NSURLSessionDownloadTask实现大文件下载
- 4.1 涉及知识点(1)使用NSURLSession和NSURLSessionDownload可以很方便的实现文件下载操作 第一个参数:要下载文件的url路径 第二个参数:当接收完服务器返回的数据 ...
- Java Timestamp 类的使用
很简单,我们可以这样声明 Timestamp ts=new Timestamp(new Date().getTime());这样我们就可以得到时间比较具体的一个类型转换!!! 在开发web应用中,针对 ...
- oracle name
1.db_name 数据库名 SQL> connect xys/manager as sysdba 已连接. SQL> show user USER 为 "SYS" S ...