Laurent T, Von Brecht J H. Deep linear networks with arbitrary loss: All local minima are global[C]. international conference on machine learning, 2018: 2902-2907.

问题

这篇文章是关于深度学习的一些理论分析.

假设这么一个网络:

\[\hat{y}^{(i)}=W_LW_{L-1}\cdots W_1 x^{(i)}.
\]

其中\(x\)是输入,\(W_k\)是第\(k\)层的权重,而\(\hat{y}\)是最后的输出. 没错,这篇文章研究的是深度线性网络的性质(没有激活函数). 当然,这样子,无论有多少层,这个网络最后是一个普通线性函数,所以,作者的本意应该只是借此来窥探深度学习的一些性质.

作者证明了,在满足一定条件下,这个深度线性网络,任何局部最优解都是全局最优解.

假设和重要结果

损失函数如此表示:

\[\mathcal{L}(W_1, \ldots, W_L)=\frac{1}{N} \sum_{i=1}^N \ell (\hat{y}^{(i)}, y^{(i})
\]

假设

  1. \(d_k\)表示第\(k+1\)层的神经元个数,即\(d_0\)表示输入层的维度,\(W_k \in \mathbb{R}^{d_{k-1} \times d_k}\), \(d_L\)表示输出层的维度,
  2. \(d_k \ge \min \{d_0, d_L\}, 0 < k < L\),
  3. 损失函数关于\(\hat{y}\)凸且可微.

定理1:满足上面假设的深度线性网络,任意局部最优都是全局最优.

考虑下面问题p(2):

\[\min \quad f(W_LW_{L-1}\cdots W_1),
\]

并记\(A=W_LW_{L-1}\cdots W_1\).

则:

定理3:

假设\(f(A)\)是任意的可微函数,且满足:

\[\min \{d_1, \ldots, d_{L-1}\} \ge \min \{d_0, d_L\},
\]

则关于p(2)的任意的极小值点\((\hat{W}_1, \ldots, \hat{W}_L)\),都将满足:

\[\nabla f(\hat{A})=0 \quad \hat{A} := \hat{W}_L \hat{W}_{L-1}\cdots \hat{W}_1.
\]

证明

注意到, 可表示成:

\[\mathcal{L} (W_1, \ldots, W_L)=f(W_L\cdots W_1).
\]

则\(f(A)\)是关于\(A\)的凸的可微函数(注意是关于\(A\)), 所以,当\(\nabla f(\hat{A})=0\)的时候,\(\hat{A}\)便是\(f\),即\(\mathcal{L}\)得最小值点. 这意味着,只要我们证明了定理3,也就证明了定理1.

下证定理3:

首先定义:

记:

\[F(W_1, \ldots, W_L) := f(W_L \cdots W_1).
\]

容易证明(这部分论文中也给出了证明,不在此贴出):



其中:



不失一般性,假设\(d_L\ge d_0\), 因为令:

\[g(A) := f(A^T)
\]

则,\(g\)定义在\(d_0 \times d_L\)之上,且\(A^T\)使得\(f\)为极小值,当且仅当\(A\)使得\(g\)为极小值,所以\(d_0, d_L\)的地位是相同的,我们可以直接假设\(d_L \ge d_0\).

\((\hat{W}_1, \ldots, \hat{W}_L)\)是最小值点,则存在\(\epsilon>0\), 使得满足:



的点满足:

于是:



当\(\mathrm{ker}(\hat{W}_{L-1}) = \{0\}\)的时候:

\[\nabla f(\hat{A})=0.
\]

于是只要证明, \(\ker(\hat{W}_{L-1}) = \not \{0\}\)的时候,上式也成立即可.

我们的想法是构造一族极小值点, 满足:

\[\widetilde{A}=A,
\]

通过一些性质,推出\(\nabla f(\hat{A})=0\).

首先证明,满足:



的点都是极小值点.

因为:



所以:



所以\((\tilde{W}_1, \ldots, \tilde{W}_L)\)也是一个极小值点.

那么如何来构造呢?

可知:



对\(\hat{W}_{k, -}\)进行奇异值分解:



因为\(d_k \ge d_0, k\ge1\), 所以其分解是这样的:



注意到,这里体现了为什么需要\(d_k\ge \min \{d_L, d_0\}\), 否则\(\mathrm{ker}(\hat{W}_{k, -})\)不可能等于\(\{0\}\)(因为其秩永远小于\(d_0\)).

假设\(k_*\)是第一个\(\mathrm{ker}(\hat{W}_{k, -}) = \not\{0\}\)的,则下面的构造便是我们所需要的:



其中\(\hat{u}_{k-1}\)表示\(\hat{W}_{k-1, -}\)奇异值分解\(\hat{U}_{k-1}\)的\(d_0\)列, 很明显,满足\(\hat{u}_{k-1}^T\hat{W}_{k-1,-}=0, k\ge k^* + 1\).

条件(8)容易证明,用数学归纳法证明(9):

第一项成立,假设第\(k\)项也成立, 于是



也成立,所以条件成立.

既然满足其构造方式的所有点都是点都是极小值点,那么:



注意,对所有的满足条件的\(\delta_k, w_k\)都成立.

\(k_* > 1\)的时候可得:



又\(\mathrm{ker}(\hat{W}_{k_*-1,-})=\{0\}\), 所以:



注意到\(k_*=1\)的时候,也有上面的形式.

首先,令\(\delta_{k_*+1}=0\), 则\(\tilde{W}_{k_*+1}=\hat{W}_{k_*+1}\), 于是:



在去任意\(\delta_{k_*+1} > 0\), 与上式作差可得:



俩边同乘上\(\hat{u}_{k_*}^T\)可得:



因为\(w_{k_*+1}\)是任意的,所以,左端为0,以此类推,最后可得:

\[\nabla f(\tilde{A})=\nabla f(\hat{A})=0.
\]

证毕.

我没有把定理2放上来.

有一个方向,定理3中的极小值点改成极大值点,似乎定理也成立,即:

假设\(f(A)\)是任意的可微函数,且满足:

\[\min \{d_1, \ldots, d_{L-1}\} \ge \min \{d_0, d_L\},
\]

则关于p(2)的任意的极大值点\((\hat{W}_1, \ldots, \hat{W}_L)\),都将满足:

\[\nabla f(\hat{A})=0 \quad \hat{A} := \hat{W}_L \hat{W}_{L-1}\cdots \hat{W}_1.
\]

我自己仿照论文的证明是可以证明出来的,不过,既然\(\nabla f(\hat{A})=0\), 那么\(\hat{A}\)依然是\(\mathcal{L}\)的最小值点,是不是可以这么认为,\(f\)压根没有存粹的极大值点.

另外作者指出,极小值点不能改为驻点,因为\(A=0\)便是一个驻点,但是没有\(f(0)\)必须为0的规定.

此外作者还说明了,为什么要可微等等原因,详情回见论文.

Deep Linear Networks with Arbitrary Loss: All Local Minima Are Global的更多相关文章

  1. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  2. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

  3. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  4. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

  7. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  8. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  9. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...

随机推荐

  1. day13 iptables防火墙

    day13 iptables防火墙 一.防火墙的概述 1.什么是防火墙 防止恶意流量访问的软件就叫做防火墙. 2.防火墙的种类 软件防火墙:firewalld.iptables 硬件防火墙:F5 fi ...

  2. 【Reverse】每日必逆0x02

    BUU SimpleRev 附件 https://files.buuoj.cn/files/7458c5c0ce999ac491df13cf7a7ed9f1/SimpleRev 题解 查壳 拖入iad ...

  3. Swift Storyboard找不到类文件

    Swift语言引入了Module概念,在通过关键字@objc(类名)做转换的时候,由于Storyboard没有及时更新Module属性,会导致如下两种类型错误: 1 用@objc(类名)标记的Swif ...

  4. jdk1.6,1.7,1.8解压版无需安装(64位)

    1.java SE 1.6各个版本 jdk http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads ...

  5. oracle中注释都是问号?中文显示不出来问题

    本人在工作中需要把开发上的库恢复到自己的虚拟机里面,然而捣鼓了许久建立好数据库之后,在使用建表语句初始化表的时候,发现注释都是????? 然后一脸懵逼不知何解,网上一大堆是说修改环境变量 NLS_LA ...

  6. 【Linux】【Shell】【Basic】条件测试和变量

    bash脚本编程       脚本文件格式:         第一行,顶格:#!/bin/bash         注释信息:#         代码注释:         缩进,适度添加空白行:   ...

  7. Hystrix断路器中的服务熔断与服务降级

    一.Hystrix断路器 微服务架构特点就是多服务,多数据源,支撑系统应用.这样导致微服务之间存在依赖关系.如果其中一个服务故障,可能导致系统宕机,这就是所谓的雪崩效应. 1.为什么需要断路器 服务雪 ...

  8. 看看线程特有对象ThreadLocal

    作用:设计线程安全的一种技术. 在使用多线程的时候,如果多个线程要共享一个非线程安全的对象,常用的手段是借助锁来实现线程的安全.线程安全隐患的前提是多线程共享一个不安全的对象 ,那么有没有办法让线程之 ...

  9. CPU的负载

    目录 一.简介 二.合理的负载 一.简介 使用top或者uptime命令可以看到cpu平均负载,1,5,15分钟 平均负载包括以下几个部分: 正在运行的进程.正在使用cpu做计算的进程,ps看到R 也 ...

  10. Springboot MVC 自动配置

    Springboot MVC 自动配置 官方文档阅读 https://docs.spring.io/spring-boot/docs/current/reference/html/web.html#w ...