【数据结构与算法Python版学习笔记】图——基本概念及相关术语
概念
- 图Graph是比树更为一般的结构, 也是由节点和边构成
实际上树是一种具有特殊性质的图 - 图可以用来表示现实世界中很多有意思的事物,包括道路系统、城市之间的航班、互联网的连接,甚至是计算机专业的一系列必修课
定义
- 一个图G可以定义为G=(V, E)
- 其中V是顶点的集合, E是边的集合, E中的每条边e=(v, w), v和w都是V中的顶点;
- 如果是赋权图,则可以在e中添加权重分量子图: V和E的子集
术语表
顶点Vertex(也称“节点Node”)
是图的基本组成部分,顶点具有名称标识Key,也可以携带数据项payload边Edge(也称“弧Arc”)
作为2个顶点之间关系的表示,边连接两个顶点;边
可以是无向或者有向的,相应的图称作“无向图”和“有向图”权重Weight
为了表达从一个顶点到另一个顶点的“代价”,可以给边赋权;例如公交网络中两个站点之间的“距离”、“通行时间”和“票价”都可以作为权重
路径Path
图中的路径,是由边依次连接起来的顶点序列;无权路径的长度为边的数量;带权路径的长度为所有边权重的和;环(圈Cycle)
- 环是有向图中的一条起点和终点为同一个顶点的路径。
- 没有环的图被称为无环图,没有环的有向图被称为有向无环图,简称为DAG
图的抽象数据类型
Graph()
新建一个空图。addVertex(vert)
向图中添加一个顶点实例。addEdge(fromVert, toVert)
向图中添加一条有向边,用于连接顶点fromVert和toVert。addEdge(fromVert, toVert, weight)
向图中添加一条带权重weight的有向边,用于连接顶点fromVert和toVert。getVertex(vertKey)
在图中找到名为vertKey的顶点。getVertices()
以列表形式返回图中所有顶点。in
通过vertex in graph
这样的语句,在顶点存在时返回True,否则返回False。
实现方法
- 邻接矩阵adjacency matrix
- 邻接表adjacency list
两种方法各有优劣,需要在不同应用中加以选择
邻接矩阵Adjacency Matrix
- 矩阵的每行和每列都代表图中的顶点
- 如果两个顶点之间有边相连, 设定行列值
- 无权边则将矩阵分量标注为1,或者0
- 带权边则将权重保存为矩阵分量值
- 优点是简单,可以很容易得到顶点是如何相连
- 但如果图中的边数很少则效率低下
成为“稀疏sparse”矩阵,而大多数问题所对应的图都是稀疏的
邻接列表Adjacency List
- 邻接列表adjacency list可以成为稀疏图的更高效实现方案
- 维护一个包含所有顶点的主列表(master list)
- 主列表中的每个顶点,再关联一个与自身有边连接的所有顶点的列表
- 邻接列表法的存储空间紧凑高效
很容易获得顶点所连接的所有顶点,以及连接边的信息
代码
class Vertex:
def __init__(self, key):
self.id = key
self.connectedTo = {}
def addNeigbor(self, nbr, weight=0):
'''nbr是顶点对象的key'''
self.connectedTo[nbr] = weight
def __str__(self):
return str(self.id)+' connectedTo: ' + str([x.id for x in self.connectedTo])
def getConnections(self):
return self.connectedTo.keys()
def getId(self):
return self.id
def getWeight(self, nbr):
return self.connectedTo[nbr]
class Graph:
def __init__(self):
self.vertList = {}
self.numVertices = 0
def addVertex(self, key):
self.numVertices += 1
newVertex = Vertex(key)
self.vertList[key] = newVertex
return newVertex
def getVertex(self, key):
if key in self.vertList:
return self.vertList[key]
else:
return None
def __contains__(self, key):
return key in self.vertList
def addEdge(self, f, t, cost=0):
# 不存在的点先添加
if f not in self.vertList:
nv = self.addVertex(f)
if t not in self.vertList:
nv = self.addVertex(t)
# 调用起始顶点的方法添加邻接边
self.vertList[f].addNeigbor(self.vertList[t], cost)
def getVertices(self):
return self.vertList.keys()
def __iter__(self):
return iter(self.vertList.values())
if __name__ == "__main__":
g = Graph()
for i in range(6):
g.addVertex(i)
print(g.vertList[i])
# print(g.vertList)
g.addEdge(0, 1, 5)
g.addEdge(0, 5, 2)
g.addEdge(1, 2, 4)
g.addEdge(2, 3, 9)
for v in g:
for w in v.getConnections():
print("%s,%s" % (v.getId(), w.getId()))
for i in range(6):
print(g.vertList[i])
>>>
0 connectedTo: []
1 connectedTo: []
2 connectedTo: []
3 connectedTo: []
4 connectedTo: []
5 connectedTo: []
0,1
0,5
1,2
2,3
0 connectedTo: [1, 5]
1 connectedTo: [2]
2 connectedTo: [3]
3 connectedTo: []
4 connectedTo: []
5 connectedTo: []
【数据结构与算法Python版学习笔记】图——基本概念及相关术语的更多相关文章
- 【数据结构与算法Python版学习笔记】引言
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...
- 【数据结构与算法Python版学习笔记】目录索引
引言 算法分析 基本数据结构 概览 栈 stack 队列 Queue 双端队列 Deque 列表 List,链表实现 递归(Recursion) 定义及应用:分形树.谢尔宾斯基三角.汉诺塔.迷宫 优化 ...
- 【数据结构与算法Python版学习笔记】图——强连通分支
互联网 我们关注一下互联网相关的非常巨大图: 由主机通过网线(或无线)连接而形成的图: 以及由网页通过超链接连接而形成的图. 网页形成的图 以网页(URI作为id)为顶点,网页内包含的超链接作为边,可 ...
- 【数据结构与算法Python版学习笔记】图——最短路径问题、最小生成树
最短路径问题 概念 可以通过"traceroute"命令来跟踪信息传送的路径: traceroute www.lib.pku.edu.cn 可以将互联网路由器体系表示为一个带权边的 ...
- 【数据结构与算法Python版学习笔记】图——拓扑排序 Topological Sort
概念 很多问题都可转化为图, 利用图算法解决 例如早餐吃薄煎饼的过程 制作松饼的难点在于知道先做哪一步.从图7-18可知,可以首先加热平底锅或者混合原材料.我们借助拓扑排序这种图算法来确定制作松饼的步 ...
- 【数据结构与算法Python版学习笔记】图——骑士周游问题 深度优先搜索
骑士周游问题 概念 在一个国际象棋棋盘上, 一个棋子"马"(骑士) , 按照"马走日"的规则, 从一个格子出发, 要走遍所有棋盘格恰好一次.把一个这样的走棋序列 ...
- 【数据结构与算法Python版学习笔记】图——词梯问题 广度优先搜索 BFS
词梯Word Ladder问题 要求是相邻两个单词之间差异只能是1个字母,如FOOL变SAGE: FOOL >> POOL >> POLL >> POLE > ...
- 【数据结构与算法Python版学习笔记】查找与排序——散列、散列函数、区块链
散列 Hasing 前言 如果数据项之间是按照大小排好序的话,就可以利用二分查找来降低算法复杂度. 现在我们进一步来构造一个新的数据结构, 能使得查找算法的复杂度降到O(1), 这种概念称为" ...
- 【数据结构与算法Python版学习笔记】算法分析
什么是算法分析 算法是问题解决的通用的分步的指令的聚合 算法分析主要就是从计算资源的消耗的角度来评判和比较算法. 计算资源指标 存储空间或内存 执行时间 影响算法运行时间的其他因素 分为最好.最差和平 ...
随机推荐
- 学习Linux tar 命令:最简单也最困难
摘要:在本文中,您将学习与tar 命令一起使用的最常用标志.如何创建和提取 tar 存档以及如何创建和提取 gzip 压缩的 tar 存档. 本文分享自华为云社区<Linux 中的 Tar 命令 ...
- kubernetes 使用 PV 和 PVC 管理数据存储
文章链接 容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题.首先,当容器崩溃时,kubelet 会重启它,但是容器中的文件将丢失--容器以干净的状态(镜像最初的状态)重 ...
- Redis详解(三)——
redis https://www.cnblogs.com/zhangyinhua/p/14504717.html
- Python习题集(十五)
每天一习题,提升Python不是问题!!有更简洁的写法请评论告知我! https://www.cnblogs.com/poloyy/category/1676599.html 题目 请写一个函数,该函 ...
- Activiti 学习(二)—— Activiti 流程定义和部署
概述 在这一节,我们将创建一个 Activit 工作流,并启动这个流程,主要包含以下几个步骤: 定义流程,按照 BPMN 的规范,使用流程定义工具,用流程符号把整个流程描述出来 部署流程,把画好的流程 ...
- Apache Hudi内核之文件标记机制深入解析
1. 摘要 Hudi 支持在写入时自动清理未成功提交的数据.Apache Hudi 在写入时引入标记机制来有效跟踪写入存储的数据文件. 在本博客中,我们将深入探讨现有直接标记文件机制的设计,并解释了其 ...
- 在C#中使用RSA进行加密和解密
这篇文章向您展示了如何在c#.net Windows窗体应用程序中使用RSA算法对字符串进行加密和解密.RSA是由Ron Rivest,Adi Shamir和Leonard Adleman开发的非对称 ...
- JS006. 详解自执行函数原理与数据类型的快速转换 (声明语句、表达式、运算符剖析)
今天的主角: Operator Description 一元正值符 " + "(MDN) 一元运算符, 如果操作数在之前不是number,试图将其转换为number. 圆括号运算符 ...
- Vue设置全局cookies样式
''' 配置全局cookies样式 下载:cnpm install vue-cookies import cookies from 'vue-cookies' Vue.prototype.$cooki ...
- SpringBoot异步使用@Async原理及线程池配置
前言 在实际项目开发中很多业务场景需要使用异步去完成,比如消息通知,日志记录,等非常常用的都可以通过异步去执行,提高效率,那么在Spring框架中应该如何去使用异步呢 使用步骤 完成异步操作一般有两种 ...