CF893B Beautiful Divisors 题解
Content
给定一个数 \(n\),求出 \(n\) 最大的可以表示成 \((2^k-1)\cdot2^{k-1}\) 形式的因数 \(x\)。
数据范围:\(1\leqslant n\leqslant 10^5\)。
Solution
数据范围很小,所以我们先考虑将 \(10^5\) 以内的能够表示成 \((2^k-1)\cdot2^{k-1}\) 形式的数全部通过打表生成出来。而且打完以后,我们发现,事实上满足这个条件的数在 \(10^5\) 以内只有 \(8\) 个:\(1,6,28,120,496,2016,8128,32640\)。
然后输入完 \(n\),就直接从 \(n\) 开始往 \(1\) 直接枚举,一旦找出了可以表示成 \((2^k-1)\cdot2^{k-1}\) 的因数就直接输出即可。
Code
int num[17], n, cnt, vis[200007];
int main() {
while(num[cnt] <= 100000) ++cnt, num[cnt] = (1 << (2 * cnt - 1)) - (1 << (cnt - 1));
F(int, i, 1, cnt) vis[num[i]] = 1;
n = Rint;
R(int, i, n, 1) if(vis[i] && !(n % i)) return write(i), 0;
return 0;
}
CF893B Beautiful Divisors 题解的更多相关文章
- codeforces 893B Beautiful Divisors 打表
893B Beautiful Divisors 思路: 打表 代码: #include <bits/stdc++.h> using namespace std; #define _for( ...
- Educational Codeforces Round 33 (Rated for Div. 2) B. Beautiful Divisors【进制思维/打表】
B. Beautiful Divisors time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- CF55D Beautiful numbers 题解
题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...
- 【SP26073】DIVCNT1 - Counting Divisors 题解
题目描述 定义 \(d(n)\) 为 \(n\) 的正因数的个数,比如 \(d(2) = 2, d(6) = 4\). 令 $ S_1(n) = \sum_{i=1}^n d(i) $ 给定 \(n\ ...
- 【Educational Codeforces Round 33 B】Beautiful Divisors
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把所有的那些数字打表出来. 逆序枚举就好 [代码] /* 1.Shoud it use long long ? 2.Have you ...
- CF1265B Beautiful Numbers 题解
Content 给定一个 \(1\sim n\) 的排列,请求出对于 \(1\leqslant m\leqslant n\),是否存在一个区间满足这个区间是一个 \(1\sim m\) 的排列. 数据 ...
- UVA294 约数 Divisors 题解
Content 给定 \(n\) 个区间 \([l,r]\),求出每个区间内约数个数最大的数. 数据范围:\(1\leqslant l<r\leqslant 10^{10}\),\(r-l\le ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学
题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...
- HDU5179 beautiful number 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5179 题目大意: 给你一个数 \(A = a_1a_2 \cdots a_n\) ,我们称 \(A\) ...
随机推荐
- layui某个字段不让页面显示显示
<script src="/layuiadmin/layui/layui.js"></script> <script> layui.config ...
- mabatis的mapper文件找不到-ssm升级maven常见问题
手里项目之前是普通ssm的,打算用业余时间升级一把. 1.首先,搭建好maven的ssm项目. 2.配置好jdk,tomcat环境,先启动. 3.启动没问题后将maven目录结构布置好后直接将原有项目 ...
- System类的常用方法(currentTimeMillis与arraycopy)
System类的常用方法 currentTimeMillis与arraycopy import java.util.Arrays; /* java.lang.System类中提供了大量的静态方法,可以 ...
- 最强最全面的Hive SQL开发指南,超四万字全面解析
本文整体分为两部分,第一部分是简写,如果能看懂会用,就直接从此部分查,方便快捷,如果不是很理解此SQL的用法,则查看第二部分,是详细说明,当然第二部分语句也会更全一些! 第一部分: hive模糊搜索表 ...
- BehaviorTree.CPP行为树BT的入门(二)
节点与树 用户必须创建自己的ActionNodes和ConditionNodes(LeafNodes):该库可帮助您轻松地将它们组成树. 将LeafNodes视为组成复杂系统所需的构建块. 根据定义, ...
- CF1493E Enormous XOR
题目传送门. 题意简述:给出长度为 \(n\) 的二进制数 \(l,r\),求 \(\max_{l\leq x\leq y\leq r}\oplus_{i=x}^yi\). 非常搞笑的题目,感觉难度远 ...
- 解决mac电脑耳机/外放突然无声音
问题现象 mac电脑基本不会关机,近期发送隔一段时间出现网易云音乐可以播放但是耳机.外放均无声音的问题.此时,电脑本身的声音提示.远程会议声音均正常. 解决方法 网上搜了一圈解决方案,最后发现是输出设 ...
- Redis集合解决大数据筛选
Redis集合:集合是什么,就是一堆确定的数据放在一起,数学上集合有交集.并集的概念,这个就可以用来做大数据的筛选功能. 以商品为例,假如商品有颜色和分类.价格区间等属性. 给所有统一颜色的商品放一个 ...
- Flink(九)【Flink的重启策略】
目录 1.Flink的重启策略 2.重启策略 2.1未开启checkpoint 2.2开启checkpoint 1)不设置重启策略 2)不重启 3)固定延迟重启(默认) 4)失败率重启 3.重启效果演 ...
- 输入URL展示过程
一. 输入URL,回车 敲击某个键时,键盘内的处理器会先对键矩阵进行分析,然后将数据发送到计算机 计算机接收到来自键盘的信号,由键盘控制器(一种集成电路)进行处理,发送给操作系统 操作系统会分析,这些 ...