Content

给定一个长度为 \(n-1\) 的序列 \(q\),问你是否能找到一个 \(1\sim n\) 的排列 \(p\),使得 \(\forall i\in[1,n)\),\(q_i=p_{i+1}-p_i\)。

数据范围:\(2\leqslant n\leqslant 2\times 10^5\),\(-n<q_i<n\)。

Solution

首先我们不难知道,设 \(S_i=\sum\limits_{j=1}^i q_j\),那我们不难知道,\(S_i\) 越小,第 \(i+1\) 个数就越小。因此我们考虑前缀和处理下,找到能使得 \(S_i\) 最小的 \(i\),然后不难发现 \(p_{i+1}=1\),再从 \(p_{i+1}\) 开始暴力往前往后直接推出原来的数列,最后再判断 \(1\sim n\) 是否在这个数列中都恰好出现过一次即可。

Code

int n, cha[200007], a[200007], sum, ans, id1 = 1;
map<int, int> vis; int main() {
n = Rint;
F(i, 1, n - 1) {
cha[i] = Rint, sum += cha[i];
if(sum < ans) ans = sum, id1 = i + 1;
}
a[id1] = 1;
R(i, id1 - 1, 1) a[i] = a[i + 1] - cha[i];
F(i, id1 + 1, n) a[i] = a[i - 1] + cha[i - 1];
F(i, 1, n) {
if(vis[a[i]]) return printf("-1"), 0;
vis[a[i]] = 1;
}
F(i, 1, n) if(!vis[i]) return printf("-1"), 0;
F(i, 1, n) write(a[i]), putchar(i == n ? '\n' : ' ');
return 0;
}

CF1141C Polycarp Restores Permutation 题解的更多相关文章

  1. $CF1141C Polycarp Restores Permutation$

    \(problem\) 这题的大致意思就是已知数值差值 求1-n的排列 如果能构成排列 则输出这个排列.如果不能则输出-1 排列的值都是 大于1 而小于n的 而且没有相同的数字. 这题最关键的是 怎么 ...

  2. CF 1141C Polycarp Restores Permutation

    Description An array of integers p1,p2,…,pnp1,p2,…,pn is called a permutation if it contains each nu ...

  3. Codeforces Round #547 (Div. 3) C. Polycarp Restores Permutation (数学)

    题意:有一长度为\(n\)的序列\(p\),现在给你\(q_i=p_{i+1}-q_i \ (1\le i\le n)\),问你是否能还原出原序列,如果能救输出原序列,否则输出\(-1\). 题解:由 ...

  4. C. Polycarp Restores Permutation

    链接 [https://codeforces.com/contest/1141/problem/C] 题意 qi=pi+1−pi.给你qi让你恢复pi 每个pi都不一样 分析 就是数学吧 a1 +(a ...

  5. Polycarp Restores Permutation

    http://codeforces.com/contest/1141/problem/C一开始没想法暴力的,next_permutation(),TLE 后来看了这篇https://blog.csdn ...

  6. 【CF1443E】Long Permutation 题解(排列生成模板)

    原题链接 题意简介 给定一个长度为 n 的排列 {1,2,3,...,n} .现有两种操作: 对某个区间 [l,r] 求和 将排列往后推 x 次 (按字典序) 其中 \(n,q \leq 2\time ...

  7. T - Permutation 题解(思维+dp)

    题目链接 题目大意 给你一个数字n和长为n-1个字符串 字符串包含'<','>' 若s[i]='<' 则代表a[i]<a[i+1] 若s[i]='>' 则代表a[i]&g ...

  8. CF1006B Polycarp's Practice 题解

    Content 给定一个长度为 \(n\) 的数列,试将其分成 \(k\) 段,使得每一段中的最大值的和最大. 数据范围:\(1\leqslant k,n,a_i\leqslant 2000\). S ...

  9. CF1454A Special Permutation 题解

    Content 给定一个整数 \(n\),请构造出一个长度为 \(n\) 的排列 \(\{a_i\}_{i=1}^n\),使得对于每个 \(a_i\),都有 \(a_i\neq i\). 我们称一个长 ...

随机推荐

  1. 使用bootstrap-table时导出excel开头的0被自动省略

    原因是excel"智能"识别数据格式,有时聪明反被聪明误. 解决方案:修改tableExport.js 搜索: if (typeof tdcss != 'undefined' &a ...

  2. 洛谷 P4062 - [Code+#1]Yazid 的新生舞会(权值线段树)

    题面传送门 题意: 给出一个序列 \(a\),求 \(a\) 有多少个子区间 \([l,r]\),满足这个区间中出现次数最多的数出现次数 \(>\dfrac{r-l+1}{2}\) \(1 \l ...

  3. Codeforces 576D - Flights for Regular Customers(bitset 优化广义矩阵乘法)

    题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,你初始在 \(1\) 号点,边上有边权 \(c_i\) 表示只有当你经过至少 \(c_i\) 条边的时候你才能经过第 \(i\) ...

  4. 洛谷 P6667 - [清华集训2016] 如何优雅地求和(下降幂多项式,多项式)

    题面传送门 wjz:<如何优雅地 AK NOI> 我:如何优雅地爆零 首先,按照这题总结出来的一个小套路,看到多项式与组合数结合的题,可以考虑将普通多项式转为下降幂多项式,因为下降幂和组合 ...

  5. Environment Modules 简明教程

    Environment Modules 简明教程 1. Modules 简介 在 Linux 超算平台上,通常会安装有不同版本的多种编译器和其他软件等,如常用的编译器有 intel 和 gnu,常用的 ...

  6. Linux—软件包管理器yum安装详解

    yum( Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器. 基於RPM包管理,能够从指定的服务器自动下载RPM包 ...

  7. springcloud - alibaba快速上手 - 更新完毕

    1.简单对比一下springcloud与springcloud-alibaba 2.准备知识 官网:https://nacos.io/zh-cn/ 查看cloud和springboot的对应关系 ht ...

  8. 云原生时代,为什么基础设施即代码(IaC)是开发者体验的核心?

    作者 | 林俊(万念) 来源 |尔达 Erda 公众号 从一个小故事开始 你是一个高级开发工程师. 某天,你自信地写好了自动煮咖啡功能的代码,并在本地调试通过.代码合并入主干分支后,你准备把服务发布到 ...

  9. Spring Cloud声明式调用Feign负载均衡FeignClient详解

    为了深入理解Feign,下面将从源码的角度来讲解Feign.首先来看看FeignClient注解@FeignClient的源码,代码如下: FeignClient注解被@Target(ElementT ...

  10. java.util.Collections.copy()方法注意点

    今天发现单独的将一个ArrayList的对象添加到另外一个ArrayList的时候,总是源列表和目的列表相同的内存地址.原因如下: 偶然看到了Collections的copy(List desc,Li ...