Content

给定一个 \(1\sim n\) 的一个排列 \(p\),你每次可以选择一个区间 \([l,r]\) 并花费 \(r-l+1\) 的代价将下标在这个区间内的所有数升序排序,求使得排列 \(p\) 从 \(1\sim n\) 按升序排序的最少代价。

数据范围:\(t\) 组数据,\(1\leqslant t,\sum n\leqslant 10^6\)。

Solution

我们直接来考虑正解。

我们不妨考虑怎样去选择区间才能做到最小代价,然后我们不难想到这样的贪心做法:如果一段区间 \([l,r]\) 里面的所有数是一个 \(l\sim r\) 的一种排列并且区间长度不为 \(1\)(长度为 \(1\) 的话不需要花费 \(1\) 的代价去升序排列这个区间),那么我们就立即选择这一个区间翻转,并更新下一个需要翻转的区间的左端点。这样可以保证花费的代价是最小的。

具体如何判断一段区间 \([l,r]\) 里面的所有数是一个 \(l\sim r\) 的一种排列,我们只需要边输入的时候边判断前缀区间 \([1,i]\) 中的数的最大值是否就是 \(i\) 即可,详情请看代码。

Code

int p[1000007];

int main() {
MT {
int n = Rint, maxi = 0, ans = 0, l = 1;
F(int, i, 1, n) {
p[i] = Rint, maxi = max(maxi, p[i]);
if(maxi == i) ans += (i - l + 1 != 1) * (i - l + 1), l = i + 1; //这里将 (i - l + 1 != 1) 当做一个 0/1 值,可以省略掉一个 if
}
println(ans1);
}
return 0;
}

LuoguP7714 「EZEC-10」排列排序 题解的更多相关文章

  1. 「状压DP」「暴力搜索」排列perm

    「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...

  2. loj #2509. 「AHOI / HNOI2018」排列

    #2509. 「AHOI / HNOI2018」排列   题目描述 给定 nnn 个整数 a1,a2,…,an(0≤ai≤n),以及 nnn 个整数 w1,w2,…,wn.称 a1,a2,…,an 的 ...

  3. 「CTSC 2011」排列

    「CTSC 2011」排列 要求不存在公差为 A 或者公比为 B 的子列,那么实际上可以把该问题转化为求一个图的最优拓朴序. 任意差为 A 或者比为 B 的两个数连一条边. 求一个合法序列的答案可以用 ...

  4. 【LOJ】#2509. 「AHOI / HNOI2018」排列

    题解 虽然要求一个dfs序,但是不是从根开始贪心 从最小的点开始贪心,最小的点显然是父亲选了之后马上就选它 那么我们每次把最小的点和父亲合并,两个联通块之间也是如此 对于两个联通块,他们合并的顺序应该 ...

  5. loj#2509. 「AHOI / HNOI2018」排列(思维题 set)

    题意 题目链接 Sol 神仙题Orz 首先不难看出如果我们从\(a_i\)向\(i\)连一条边,我们会得到以\(0\)为根的树(因为每个点一定都有一个入度,出现环说明无解),同时在进行排列的时候需要保 ...

  6. 「ZJOI 2010」 排列计数

    题目链接 戳我 \(Solution\) 其实我们可以发现这题等价于让你求: 用\(1\)~\(n\)的数组成一个完全二叉树使之满足小根堆性质的方案数 于是我们可以考虑\(dp\) 假设我们现在在\( ...

  7. LuoguP7127 「RdOI R1」一次函数(function) 题解

    Content 设 \(S_k\) 为直线 \(f(x)=kx+k-1\),直线 \(f(x)=(k+1)x+k\) 与 \(x\) 轴围成的三角形的面积.现在给出 \(t\) 组询问,每组询问给定一 ...

  8. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  9. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

随机推荐

  1. idea插件 Background Image Plus 随机更换背景图片

    首先在市场搜索: Background Image Plus 设置图片: 在view中,有set 图片,有random图片,有clean图片的 设置就是用set,随便设置个路径. 重点来了,随机更换背 ...

  2. vue使用axios读取本地json文件来显示echarts折线图

    编辑器:HBuilderx axios文档:http://www.axios-js.com/zh-cn/docs/ echarts实例:https://echarts.apache.org/examp ...

  3. [NOIP2017 提高组] 逛公园

    考虑先做一个\(dp\),考虑正反建图,然后按0边拓扑,然后按1到这里的最小距离排序,然后扩展这个\(f_{i,j}\),即多了\(j\)的代价的方案数.

  4. Topcoder 12519 ScotlandYard(点对 dp+最长路)

    题面传送门 题意: 有两个人 A 和 B 玩一个游戏.游戏规则大致是这样的: 有 \(n\) 个城市和三种交通工具公交.地铁和出租车. 给出三个 \(n\times n\) 的字符矩阵 \(b,m,t ...

  5. P4569 [BJWC2011]禁忌

    题目传送门. 题意简述:给出大小为 \(n\) 的字典 \(s\).设函数 \(g(t)\) 表示 \(t\) 最多能被分割成的单词个数.等概率随机生成长度为 \(len\) 的字符串 \(T\),求 ...

  6. zabbix忘记密码——进入数据库修改

    登录数据库,选择zabbix数据库 查看数据库里面的表 用户和用户密码在users表里面 将你想设置的密码进行MD5加密处理: 更新密码即可: update users set passwd=&quo ...

  7. 15.Pow(x, n)

    Pow(x, n) Total Accepted: 88351 Total Submissions: 317095 Difficulty: Medium Implement pow(x, n). 思路 ...

  8. PhantomJS的安装和使用

    PhantomJS是一个无界面的.可脚本编程的WebKit浏览器引擎,它原生支持多种Web标准:DOM操作.CSS选择器.JSON.Canvas以及SVG.Selenium支持PhantomJS,这样 ...

  9. Prometheus基础

    监控系统作用 监控系统主要用于保证所有业务系统正常运行, 和业务的瓶颈监控. 需要周期性采集和探测. 采集的详情 采集: 采集器, 被监控端, 监控代理, 应用程序自带仪表盘, 黑盒监控, SNMP. ...

  10. 数据集成工具—Sqoop

    数据集成/采集/同步工具 @ 目录 数据集成/采集/同步工具 Sqoop简介 Sqoop安装 1.上传并解压 2.修改文件夹名字 3.修改配置文件 4.修改环境变量 5.添加MySQL连接驱动 6.测 ...