简介

如果数据中有很多NaN的值,存储起来就会浪费空间。为了解决这个问题,Pandas引入了一种叫做Sparse data的结构,来有效的存储这些NaN的值。

Spare data的例子

我们创建一个数组,然后将其大部分数据设置为NaN,接着使用这个数组来创建SparseArray:

In [1]: arr = np.random.randn(10)

In [2]: arr[2:-2] = np.nan

In [3]: ts = pd.Series(pd.arrays.SparseArray(arr))

In [4]: ts
Out[4]:
0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569
dtype: Sparse[float64, nan]

这里的dtype类型是Sparse[float64, nan],它的意思是数组中的nan实际上并没有存储,只有非nan的数据才被存储,并且这些数据的类型是float64.

SparseArray

arrays.SparseArray 是一个 ExtensionArray ,用来存储稀疏的数组类型。

In [13]: arr = np.random.randn(10)

In [14]: arr[2:5] = np.nan

In [15]: arr[7:8] = np.nan

In [16]: sparr = pd.arrays.SparseArray(arr)

In [17]: sparr
Out[17]:
[-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.14529711373305043, nan, 0.6060271905134522, 1.3342113401317768]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)

使用 numpy.asarray() 可以将其转换为普通的数组:

In [18]: np.asarray(sparr)
Out[18]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
nan, 0.606 , 1.3342])

SparseDtype

SparseDtype 表示的是Spare类型。它包含两种信息,第一种是非NaN值的数据类型,第二种是填充时候的常量值,比如nan:

In [19]: sparr.dtype
Out[19]: Sparse[float64, nan]

可以像下面这样构造一个SparseDtype:

In [20]: pd.SparseDtype(np.dtype('datetime64[ns]'))
Out[20]: Sparse[datetime64[ns], NaT]

可以指定填充的值:

In [21]: pd.SparseDtype(np.dtype('datetime64[ns]'),
....: fill_value=pd.Timestamp('2017-01-01'))
....:
Out[21]: Sparse[datetime64[ns], Timestamp('2017-01-01 00:00:00')]

Sparse的属性

可以通过 .sparse 来访问sparse:

In [23]: s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]")

In [24]: s.sparse.density
Out[24]: 0.5 In [25]: s.sparse.fill_value
Out[25]: 0

Sparse的计算

np的计算函数可以直接用在SparseArray中,并且会返回一个SparseArray。

In [26]: arr = pd.arrays.SparseArray([1., np.nan, np.nan, -2., np.nan])

In [27]: np.abs(arr)
Out[27]:
[1.0, nan, nan, 2.0, nan]
Fill: nan
IntIndex
Indices: array([0, 3], dtype=int32)

SparseSeries 和 SparseDataFrame

SparseSeries 和 SparseDataFrame在1.0.0 的版本时候被删除了。取代他们的是功能更强的SparseArray。

看下两者的使用上的区别:

# Previous way
>>> pd.SparseDataFrame({"A": [0, 1]})
# New way
In [31]: pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])})
Out[31]:
A
0 0
1 1

如果是SciPy 中的sparse 矩阵,那么可以使用 DataFrame.sparse.from_spmatrix() :

# Previous way
>>> from scipy import sparse
>>> mat = sparse.eye(3)
>>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C'])
# New way
In [32]: from scipy import sparse In [33]: mat = sparse.eye(3) In [34]: df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C']) In [35]: df.dtypes
Out[35]:
A Sparse[float64, 0]
B Sparse[float64, 0]
C Sparse[float64, 0]
dtype: object

本文已收录于 http://www.flydean.com/13-python-pandas-sparse-data/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

Pandas高级教程之:稀疏数据结构的更多相关文章

  1. Pandas高级教程之:GroupBy用法

    Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...

  2. Pandas高级教程之:Dataframe的合并

    目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析 ...

  3. Pandas高级教程之:处理text数据

    目录 简介 创建text的DF String 的方法 columns的String操作 分割和替换String String的连接 使用 .str来index extract extractall c ...

  4. Pandas高级教程之:处理缺失数据

    目录 简介 NaN的例子 整数类型的缺失值 Datetimes 类型的缺失值 None 和 np.nan 的转换 缺失值的计算 使用fillna填充NaN数据 使用dropna删除包含NA的数据 插值 ...

  5. Pandas高级教程之:category数据类型

    目录 简介 创建category 使用Series创建 使用DF创建 创建控制 转换为原始类型 categories的操作 获取category的属性 重命名categories 使用add_cate ...

  6. Pandas高级教程之:plot画图详解

    目录 简介 基础画图 其他图像 bar stacked bar barh Histograms box Area Scatter Hexagonal bin Pie 在画图中处理NaN数据 其他作图工 ...

  7. Pandas高级教程之:统计方法

    目录 简介 变动百分百 Covariance协方差 Correlation相关系数 rank等级 简介 数据分析中经常会用到很多统计类的方法,本文将会介绍Pandas中使用到的统计方法. 变动百分百 ...

  8. Pandas高级教程之:window操作

    目录 简介 滚动窗口 Center window Weighted window 加权窗口 扩展窗口 指数加权窗口 简介 在数据统计中,经常需要进行一些范围操作,这些范围我们可以称之为一个window ...

  9. Pandas高级教程之:自定义选项

    目录 简介 常用选项 get/set 选项 经常使用的选项 最大展示行数 超出数据展示 最大列的宽度 显示精度 零转换的门槛 列头的对齐方向 简介 pandas有一个option系统可以控制panda ...

随机推荐

  1. Django(47)drf请求生命周期分析

    前言   一般我们写完序列化以后,我们就会开始写视图了,drf中我们一般使用CBV的方式,也就是类视图的方式,最基础的我们会使用from rest_framework.views import API ...

  2. python做反被爬保护的方法

    python做反被爬保护的方法 网络爬虫,是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成.但是当网络爬虫被滥用后,互联网上就出现太多同质的东西,原创得不到保护.于是,很 ...

  3. 硬核!2w 字长文爆肝分布式事务知识点!!

    前言 分布式事务,是分布式架构中一个绕不开的话题,而什么是分布式事务?为什么要使用分布式事务?分布式事务有哪些实现方案?更是面试时面试官特别喜欢的一个分布式三连炮!同时用XMind画了一张导图记录分布 ...

  4. 【NX二次开发】NX内部函数,libugui.dll文件中的内部函数

    本文分为两部分:"带参数的函数"和 "带修饰的函数". 浏览这篇博客前请先阅读: [NX二次开发]NX内部函数,查找内部函数的方法 带参数的函数: bool A ...

  5. React Hooks使用避坑指南

    函数组件比类组件更加方便实现业务逻辑代码的分离和组件的复用,函数组件也比类组件轻量,没有react hooks之前,函数组件是无法实现LocalState的,这导致有localstate状态的组件无法 ...

  6. Java JDK 动态代理(AOP)使用及实现原理分析

    一.什么是代理? 代理是一种常用的设计模式,其目的就是为其他对象提供一个代理以控制对某个对象的访问.代理类负责为委托类预处理消息,过滤消息并转发消息,以及进行消息被委托类执行后的后续处理. 代理模式U ...

  7. 《Docker基础与实战,看这一篇就够了》

    什么是Docker? Docker 使用 Google 公司推出的 Go 语言 进行开发实现,基于 Linux 内核的 cgroup,namespace,以及 AUFS 类的 Union FS 等技术 ...

  8. 【redis前传】自己手写一个LRU策略 | redis淘汰策略

    title: 自己手写一个LRU策略 date: 2021-06-18 12:00:30 tags: - [redis] - [lru] categories: - [redis] permalink ...

  9. split截取字符串

    一.根据单个分隔字符用split截取字符串:string st="GT123_1";split代码:string[] sArray=st.split("_"); ...

  10. 大白话spring依赖注入

    在前边的文章中分享了spring如何实现属性的注入,有注解和配置文件两种方式,通过这两种方式可以实现spring中属性的注入,具体配置可查看<spring入门(一)[依赖注入]>,那么sp ...