1 什么是逻辑回归

1.1逻辑回归与线性回归的区别:

  线性回归预测的是一个连续的值,不论是单变量还是多变量(比如多层感知器),他都返回的是一个连续的值,放在图中就是条连续的曲线,他常用来表示的数学方法是Y=aX+b;

  与之相对的,逻辑回归给出的值并不是连续的,而是 类似于“是” 和 “否” 的回答,这就类似于二元分类的问题。

1.2逻辑回归实现(sigmoid):

  在逻辑回归算法中,我们常使用的激活函数是Sigmoid函数,他能够将数据映射到 0 到 1 之间,并且通过映射判断,如果映射到的值在 1 ,就返回出一个正面的结果,与之相反,当映射的值为0时就返回一个负面的结果,这就是我们上面所提到的回答: “是”或“否”。那么,什么是Sigmoid函数呢?

  Sigmoid函数是一种在生物学中常见的S型函数,也称为S型生长曲线,他的值我们可以看做是恒在 0  到  1 之间的(因为这段区间使我们真正所关心的)。sigmoid的形式如下图所示:   

  深度学习网络本质上来说也是一种多层映射网络,当我们输入特征后,在通过如多层感知器的映射后,会一层层的映射到一个最终的形式。使用Sigmoid函数的意义就在于,他会在最后的映射中将结果映射成为0 到 1 之间的值,这时候我们就可以将映射后的值看做是神经网络给出的概率的结果。

1.3逻辑回归的常用损失函数(交叉熵):

  在线性回归中,我们常用 “mse” (平方差) 来进行损失的刻画,但是“mse”一般来进行惩罚的是损失与原有的数据集在同一个数量级的情况,假如说数量级特别的庞大,但是损失值比较小,那么所得到的损失就会很小,不利于我们的训练。针对这种情形,我们在逻辑回归中(同时在大多数的二分类问题中)使用更有效的方法————交叉熵,他会给我们展现出一种更大的损失。下面这个图就直观的显示出了L2(均方差)与logistic(交叉熵)之间关于在处理损失的差别。

 

  在keras中,我们使用的函数是binary_crossentropy,下面会以一个例子的形式来使用交叉熵实现逻辑回归。


2逻辑回归的简单实现

  这是一个关于信用卡是否存在欺诈行为的预测。

   我们给出部分数据集,并查看是否为一个二分类问题

data = pd.read_csv('tensorflow_study\dataset\credit-a.csv')

# 查看数据
print(data.head())
# 查看数据是否为二分类问题
print(data.iloc[:,-1].value_counts())

  然后,我们取出数据,并建立一个神经网络模型,这里采用两个隐藏层,使得训练时拟合程度更高一些。

# 取出除了最后一列的所有数据
x = data.iloc[:, :-1]
# 取出数据并进行替换
y = data.iloc[:, -1].replace(-1,0) # 模拟神经网络创建顺序模型,添加两个隐藏层
# 第一层是获取到的4个单元的隐藏层,数据集是15个数据的元组,使用relu激活
# 第二层是一个简单的数据处理层
# 第三层是输出层,使用Sigmoid进行激活,完成映射
model = tf.keras.Sequential(
[tf.keras.layers.Dense(4,input_shape=(15,),activation='relu'),
tf.keras.layers.Dense(4,activation='relu'),
tf.keras.layers.Dense(1,activation='sigmoid')]
) model.summary()

  查看一下我们创建的模型是否符合我们的需求

  再配置一个优化器,采用TensorFlow的梯度下降算法进行优化,使用交叉熵作为损失函数,并计算其正确率,开始训练我们的模型,再调用原始数据集中的前三个数据进行预测测试。

model.summary()

# 配置优化器
# 使用梯度下降算法进行优化,使用交叉熵作为损失函数,并计算其正确率
model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['acc']
) # 训练模型
history = model.fit(x,y,epochs=100)

 t_data = data.iloc[:3,:-1]
 print(model.predict(t_data))

  结果显而易见

  这时候,我们也可以通过pandas进行对我们模型的训练过程进行可视化查看,方便我们能够更加准确的针对我们的模型训练做一些改进。

# 查看我们在训练过程中的loss和acc的变化情况
# 散点图展示数据
plt.figure(1) ax1 = plt.subplot(2,1,1)
ax2 = plt.subplot(2,1,2)
plt.sca(ax1)
plt.title('loss ')
plt.plot(history.epoch,history.history.get('loss'))
plt.sca(ax2)
plt.title('acc ')
plt.plot(history.epoch,history.history.get('acc'))
plt.show()

  在这里,我们就会明显的发现,当我们训练到18次的时候,loss的变化就趋于稳定状态了,二acc也是跟随着loss的稳定趋于更小的波动。

::下面附上源码和数据

'''
@Author: mountain
@Date: 2020-03-30 16:11:00
@Description: 逻辑回归 --预测信用卡是否存在欺诈行为
'''
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf data = pd.read_csv('tensorflow_study\dataset\credit-a.csv') # 查看数据
print(data.head())
# 查看数据是否为二分类问题
print(data.iloc[:,-1].value_counts()) # 取出除了最后一列的所有数据
x = data.iloc[:, :-1]
# 取出数据并进行替换
y = data.iloc[:, -1].replace(-1,0) # 模拟神经网络创建顺序模型,添加两个隐藏层
# 第一层是获取到的4个单元的隐藏层,数据集是15个数据的元组,使用relu激活
# 第二层是一个简单的数据处理层
# 第三层是输出层,使用Sigmoid进行激活,完成映射
model = tf.keras.Sequential(
[tf.keras.layers.Dense(4,input_shape=(15,),activation='relu'),
tf.keras.layers.Dense(4,activation='relu'),
tf.keras.layers.Dense(1,activation='sigmoid')]
) model.summary() # 配置优化器
# 使用梯度下降算法进行优化,使用交叉熵作为损失函数,并计算其正确率
model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['acc']
) # 训练模型
history = model.fit(x,y,epochs=100) t_data = data.iloc[:3,:-1]
print(model.predict(t_data)) # 查看我们在训练过程中的loss和acc的变化情况
# 散点图展示数据
plt.figure(1) ax1 = plt.subplot(2,1,1)
ax2 = plt.subplot(2,1,2)
plt.sca(ax1)
plt.title('loss ')
plt.plot(history.epoch,history.history.get('loss'))
plt.sca(ax2)
plt.title('acc ')
plt.plot(history.epoch,history.history.get('acc'))
plt.show()

ljhg

0,30.83,0,0,0,9,0,1.25,0,0,1,1,0,202,0,-1
1,58.67,4.46,0,0,8,1,3.04,0,0,6,1,0,43,560,-1
1,24.5,0.5,0,0,8,1,1.5,0,1,0,1,0,280,824,-1
0,27.83,1.54,0,0,9,0,3.75,0,0,5,0,0,100,3,-1
0,20.17,5.625,0,0,9,0,1.71,0,1,0,1,2,120,0,-1
0,32.08,4,0,0,6,0,2.5,0,1,0,0,0,360,0,-1
0,33.17,1.04,0,0,7,1,6.5,0,1,0,0,0,164,31285,-1
1,22.92,11.585,0,0,2,0,0.04,0,1,0,1,0,80,1349,-1
0,54.42,0.5,1,1,5,1,3.96,0,1,0,1,0,180,314,-1
0,42.5,4.915,1,1,9,0,3.165,0,1,0,0,0,52,1442,-1
0,22.08,0.83,0,0,0,1,2.165,1,1,0,0,0,128,0,-1
0,29.92,1.835,0,0,0,1,4.335,0,1,0,1,0,260,200,-1
1,38.25,6,0,0,5,0,1,0,1,0,0,0,0,0,-1
0,48.08,6.04,0,0,5,0,0.04,1,1,0,1,0,0,2690,-1
1,45.83,10.5,0,0,8,0,5,0,0,7,0,0,0,0,-1
0,36.67,4.415,1,1,5,0,0.25,0,0,10,0,0,320,0,-1
0,28.25,0.875,0,0,6,0,0.96,0,0,3,0,0,396,0,-1
1,23.25,5.875,0,0,8,0,3.17,0,0,10,1,0,120,245,-1
0,21.83,0.25,0,0,1,1,0.665,0,1,0,0,0,0,0,-1
1,19.17,8.585,0,0,2,1,0.75,0,0,7,1,0,96,0,-1
0,25,11.25,0,0,0,0,2.5,0,0,17,1,0,200,1208,-1
0,23.25,1,0,0,0,0,0.835,0,1,0,1,2,300,0,-1
1,47.75,8,0,0,0,0,7.875,0,0,6,0,0,0,1260,-1
1,27.42,14.5,0,0,10,1,3.085,0,0,1,1,0,120,11,-1
1,41.17,6.5,0,0,8,0,0.5,0,0,3,0,0,145,0,-1
1,15.83,0.585,0,0,0,1,1.5,0,0,2,1,0,100,0,-1
1,47,13,0,0,3,2,5.165,0,0,9,0,0,0,0,-1
0,56.58,18.5,0,0,1,2,15,0,0,17,0,0,0,0,-1
0,57.42,8.5,0,0,11,1,7,0,0,3,1,0,0,0,-1
0,42.08,1.04,0,0,9,0,5,0,0,6,0,0,500,10000,-1
0,29.25,14.79,0,0,12,0,5.04,0,0,5,0,0,168,0,-1
0,42,9.79,0,0,10,1,7.96,0,0,8,1,0,0,0,-1
0,49.5,7.585,0,0,3,2,7.585,0,0,15,0,0,0,5000,-1
1,36.75,5.125,0,0,11,0,5,0,1,0,0,0,0,4000,-1
1,22.58,10.75,0,0,8,0,0.415,0,0,5,0,0,0,560,-1
0,27.83,1.5,0,0,9,0,2,0,0,11,0,0,434,35,-1
0,27.25,1.585,0,0,2,1,1.835,0,0,12,0,0,583,713,-1
1,23,11.75,0,0,10,1,0.5,0,0,2,0,0,300,551,-1
0,27.75,0.585,1,1,2,0,0.25,0,0,2,1,0,260,500,-1
0,54.58,9.415,0,0,13,7,14.415,0,0,11,0,0,30,300,-1
0,34.17,9.17,0,0,0,0,4.5,0,0,12,0,0,0,221,-1
0,28.92,15,0,0,0,1,5.335,0,0,11,1,0,0,2283,-1
0,29.67,1.415,0,0,9,1,0.75,0,0,1,1,0,240,100,-1
0,39.58,13.915,0,0,9,0,8.625,0,0,6,0,0,70,0,-1
0,56.42,28,1,1,0,0,28.5,0,0,40,1,0,0,15,-1
0,54.33,6.75,0,0,0,1,2.625,0,0,11,0,0,0,284,-1
1,41,2.04,1,1,8,1,0.125,0,0,23,0,0,455,1236,-1
0,31.92,4.46,0,0,2,1,6.04,0,0,3,1,0,311,300,-1
0,41.5,1.54,0,0,3,2,3.5,1,1,0,1,0,216,0,-1
0,23.92,0.665,0,0,0,0,0.165,1,1,0,1,0,100,0,-1
1,25.75,0.5,0,0,0,1,0.875,0,1,0,0,0,491,0,-1
0,26,1,0,0,8,0,1.75,0,1,0,0,0,280,0,-1
0,37.42,2.04,0,0,9,0,0.04,0,1,0,0,0,400,5800,-1
0,34.92,2.5,0,0,9,0,0,0,1,0,0,0,239,200,-1
0,34.25,3,0,0,2,1,7.415,0,1,0,0,0,0,0,-1
0,23.33,11.625,1,1,9,0,0.835,0,1,0,0,0,160,300,-1
0,23.17,0,0,0,2,0,0.085,0,1,0,1,0,0,0,-1
0,44.33,0.5,0,0,3,1,5,0,1,0,0,0,320,0,-1
0,35.17,4.5,0,0,10,1,5.75,1,1,0,0,2,711,0,-1
0,43.25,3,0,0,8,1,6,0,0,11,1,0,80,0,-1
0,56.75,12.25,0,0,6,0,1.25,0,0,4,0,0,200,0,-1
0,31.67,16.165,0,0,1,0,3,0,0,9,1,0,250,730,-1
1,23.42,0.79,1,1,8,0,1.5,0,0,2,0,0,80,400,-1
1,20.42,0.835,0,0,8,0,1.585,0,0,1,1,0,0,0,-1
0,26.67,4.25,0,0,2,0,4.29,0,0,1,0,0,120,0,-1
0,34.17,1.54,0,0,2,0,1.54,0,0,1,0,0,520,50000,-1
1,36,1,0,0,0,0,2,0,0,11,1,0,0,456,-1
0,25.5,0.375,0,0,6,0,0.25,0,0,3,1,0,260,15108,-1
0,19.42,6.5,0,0,9,1,1.46,0,0,7,1,0,80,2954,-1
0,35.17,25.125,0,0,10,1,1.625,0,0,1,0,0,515,500,-1
0,32.33,7.5,0,0,11,2,1.585,0,1,0,0,2,420,0,1
1,38.58,5,0,0,2,0,13.5,0,1,0,0,0,980,0,1
0,44.25,0.5,0,0,6,0,10.75,0,1,0,1,2,400,0,1
0,44.83,7,1,1,0,0,1.625,1,1,0,1,0,160,2,1
0,20.67,5.29,0,0,8,0,0.375,0,0,1,1,0,160,0,1
0,34.08,6.5,0,0,12,0,0.125,0,1,0,0,0,443,0,1
1,19.17,0.585,1,1,12,0,0.585,0,1,0,0,0,160,0,1
0,21.67,1.165,1,1,5,0,2.5,0,0,1,1,0,180,20,1
0,21.5,9.75,0,0,0,0,0.25,0,1,0,1,0,140,0,1
0,49.58,19,0,0,13,7,0,0,0,1,1,0,94,0,1
1,27.67,1.5,0,0,6,0,2,0,1,0,1,2,368,0,1
0,39.83,0.5,0,0,6,0,0.25,0,1,0,1,2,288,0,1
0,27.25,0.625,0,0,12,0,0.455,0,1,0,0,0,200,0,1
0,37.17,4,0,0,0,2,5,0,1,0,0,2,280,0,1
0,25.67,2.21,1,1,12,0,4,0,1,0,1,0,188,0,1
0,34,4.5,0,0,12,0,1,0,1,0,0,0,240,0,1
1,49,1.5,0,0,4,3,0,0,1,0,0,0,100,27,1
0,62.5,12.75,1,1,0,1,5,0,1,0,1,0,112,0,1
0,31.42,15.5,0,0,0,0,0.5,0,1,0,1,0,120,0,1
0,52.33,1.375,1,1,0,1,9.46,0,1,0,0,0,200,100,1
0,28.75,1.5,1,1,0,0,1.5,0,1,0,0,0,0,225,1
1,28.58,3.54,0,0,3,2,0.5,0,1,0,0,0,171,0,1
0,23,0.625,1,1,12,0,0.125,0,1,0,1,0,180,1,1
1,22.5,11,1,1,8,0,3,0,1,0,0,0,268,0,1
1,28.5,1,0,0,8,0,1,0,0,2,0,0,167,500,1
0,37.5,1.75,1,1,0,2,0.25,0,1,0,0,0,164,400,1
0,35.25,16.5,1,1,0,0,4,0,1,0,1,0,80,0,1
0,18.67,5,0,0,8,0,0.375,0,0,2,1,0,0,38,1
0,25,12,0,0,5,0,2.25,0,0,2,0,0,120,5,1
0,27.83,4,1,1,3,1,5.75,0,0,2,0,0,75,0,1
0,54.83,15.5,0,0,11,5,0,0,0,20,1,0,152,130,1
0,28.75,1.165,0,0,5,0,0.5,0,1,0,1,2,280,0,1
1,25,11,1,1,12,0,4.5,0,1,0,1,0,120,0,1
0,40.92,2.25,1,1,10,1,10,0,1,0,0,0,176,0,1
1,19.75,0.75,0,0,0,0,0.795,0,0,5,0,0,140,5,1
0,29.17,3.5,0,0,9,0,3.5,0,0,3,0,0,329,0,1
1,24.5,1.04,1,1,13,7,0.5,0,0,3,1,0,180,147,1
0,24.58,12.5,0,0,9,0,0.875,0,1,0,0,0,260,0,1
1,33.75,0.75,0,0,5,2,1,0,0,3,0,0,212,0,1
0,20.67,1.25,1,1,0,1,1.375,0,0,3,0,0,140,210,1
1,25.42,1.125,0,0,8,0,1.29,0,0,2,1,0,200,0,1
0,37.75,7,0,0,8,1,11.5,0,0,7,0,0,300,5,1
0,52.5,6.5,0,0,5,0,6.29,0,0,15,1,0,0,11202,-1
0,57.83,7.04,0,0,6,0,14,0,0,6,0,0,360,1332,-1
1,20.75,10.335,0,0,2,1,0.335,0,0,1,0,0,80,50,-1
0,39.92,6.21,0,0,8,0,0.04,0,0,1,1,0,200,300,-1
0,25.67,12.5,0,0,2,0,1.21,0,0,67,0,0,140,258,-1
1,24.75,12.5,0,0,12,0,1.5,0,0,12,0,0,120,567,-1
1,44.17,6.665,0,0,8,0,7.375,0,0,3,0,0,0,0,-1
1,23.5,9,0,0,8,0,8.5,0,0,5,0,0,120,0,-1
0,34.92,5,0,0,10,1,7.5,0,0,6,0,0,0,1000,-1
0,47.67,2.5,0,0,6,2,2.5,0,0,12,0,0,410,2510,-1
0,22.75,11,0,0,8,0,2.5,0,0,7,0,0,100,809,-1
0,34.42,4.25,0,0,3,2,3.25,0,0,2,1,0,274,610,-1
1,28.42,3.5,0,0,9,0,0.835,0,1,0,1,2,280,0,-1
0,67.75,5.5,0,0,11,5,13,0,0,1,0,0,0,0,-1
0,20.42,1.835,0,0,0,0,2.25,0,0,1,1,0,100,150,-1
1,47.42,8,0,0,11,2,6.5,0,0,6,1,0,375,51100,-1
0,36.25,5,0,0,0,2,2.5,0,0,6,1,0,0,367,-1
0,32.67,5.5,0,0,8,1,5.5,0,0,12,0,0,408,1000,-1
0,48.58,6.5,0,0,8,1,6,0,1,0,0,0,350,0,-1
0,39.92,0.54,1,1,12,0,0.5,0,0,3,1,0,200,1000,-1
0,33.58,2.75,0,0,6,0,4.25,0,0,6,1,0,204,0,-1
1,18.83,9.5,0,0,9,0,1.625,0,0,6,0,0,40,600,-1
1,26.92,13.5,0,0,8,1,5,0,0,2,1,0,0,5000,-1
1,31.25,3.75,0,0,2,1,0.625,0,0,9,0,0,181,0,-1
1,56.5,16,0,0,4,7,0,0,0,15,1,0,0,247,-1
0,43,0.29,1,1,2,1,1.75,0,0,8,1,0,100,375,-1
0,22.33,11,0,0,9,0,2,0,0,1,1,0,80,278,-1
0,27.25,1.665,0,0,2,1,5.085,0,0,9,1,0,399,827,-1
0,32.83,2.5,0,0,2,1,2.75,0,0,6,1,0,160,2072,-1
0,23.25,1.5,0,0,8,0,2.375,0,0,3,0,0,0,582,-1
1,40.33,7.54,1,1,8,1,8,0,0,14,1,0,0,2300,-1
1,30.5,6.5,0,0,0,2,4,0,0,7,0,0,0,3065,-1
1,52.83,15,0,0,0,0,5.5,0,0,14,1,0,0,2200,-1
1,46.67,0.46,0,0,2,1,0.415,0,0,11,0,0,440,6,-1
1,58.33,10,0,0,8,0,4,0,0,14,1,0,0,1602,-1
0,37.33,6.5,0,0,6,1,4.25,0,0,12,0,0,93,0,-1
0,23.08,2.5,0,0,0,0,1.085,0,0,11,0,0,60,2184,-1
0,32.75,1.5,0,0,2,1,5.5,0,0,3,0,0,0,0,-1
1,21.67,11.5,1,1,4,3,0,0,0,11,0,0,0,0,-1
1,28.5,3.04,1,1,10,1,2.54,0,0,1,1,0,70,0,-1
1,68.67,15,0,0,11,5,0,0,0,14,1,0,0,3376,-1
0,28,2,0,0,5,1,4.165,0,0,2,0,0,181,0,-1
0,34.08,0.08,1,1,6,2,0.04,0,0,1,0,0,280,2000,-1
0,27.67,2,0,0,10,1,1,0,0,4,1,0,140,7544,-1
0,44,2,0,0,6,0,1.75,0,0,2,0,0,0,15,-1
0,25.08,1.71,0,0,10,0,1.665,0,0,1,0,0,395,20,-1
0,32,1.75,1,1,11,1,0.04,0,1,0,0,0,393,0,-1
1,60.58,16.5,0,0,8,0,11,0,1,0,0,0,21,10561,-1
1,40.83,10,0,0,8,1,1.75,0,1,0,1,0,29,837,-1
0,19.33,9.5,0,0,8,0,1,0,1,0,0,0,60,400,-1
1,32.33,0.54,0,0,2,0,0.04,0,1,0,1,0,440,11177,-1
0,36.67,3.25,0,0,8,1,9,0,1,0,0,0,102,639,-1
0,37.5,1.125,1,1,1,0,1.5,1,1,0,0,0,431,0,-1
1,25.08,2.54,1,1,12,0,0.25,0,1,0,0,0,370,0,-1
0,41.33,0,0,0,0,2,15,0,1,0,1,0,0,0,-1
0,56,12.5,0,0,5,1,8,0,1,0,0,0,24,2028,-1
1,49.83,13.585,0,0,5,1,8.5,0,1,0,0,0,0,0,-1
0,22.67,10.5,0,0,8,1,1.335,0,1,0,1,0,100,0,-1
0,27,1.5,1,1,9,0,0.375,0,1,0,0,0,260,1065,-1
0,25,12.5,0,0,12,0,3,0,1,0,0,2,20,0,-1
1,26.08,8.665,0,0,12,0,1.415,0,1,0,1,0,160,150,-1
1,18.42,9.25,0,0,8,0,1.21,0,0,4,1,0,60,540,-1
0,20.17,8.17,0,0,12,0,1.96,0,0,14,1,0,60,158,-1
0,47.67,0.29,0,0,0,2,15,0,0,20,1,0,0,15000,-1
1,21.25,2.335,0,0,3,2,0.5,0,0,4,1,2,80,0,-1
1,20.67,3,0,0,8,0,0.165,0,0,3,1,0,100,6,-1
1,57.08,19.5,0,0,0,0,5.5,0,0,7,1,0,0,3000,-1
1,22.42,5.665,0,0,8,0,2.585,0,0,7,1,0,129,3257,-1
0,48.75,8.5,0,0,0,1,12.5,0,0,9,1,0,181,1655,-1
0,40,6.5,0,0,12,2,3.5,0,0,1,1,0,0,500,-1
0,40.58,5,0,0,0,0,5,0,0,7,1,0,0,3065,-1
1,28.67,1.04,0,0,0,0,2.5,0,0,5,0,0,300,1430,-1
1,33.08,4.625,0,0,8,1,1.625,0,0,2,1,0,0,0,-1
0,21.33,10.5,0,0,0,0,3,0,1,0,0,0,0,0,-1
0,42,0.205,0,0,3,1,5.125,0,1,0,1,0,400,0,-1
0,41.75,0.96,0,0,10,0,2.5,0,1,0,1,0,510,600,-1
0,22.67,1.585,1,1,9,0,3.085,0,0,6,1,0,80,0,-1
0,34.5,4.04,1,1,3,2,8.5,0,0,7,0,0,195,0,-1
0,28.25,5.04,1,1,0,2,1.5,0,0,8,0,0,144,7,-1
0,33.17,3.165,1,1,10,0,3.165,0,0,3,0,0,380,0,-1
0,48.17,7.625,0,0,9,1,15.5,0,0,12,1,0,0,790,-1
0,27.58,2.04,1,1,12,0,2,0,0,3,0,0,370,560,-1
0,22.58,10.04,0,0,10,0,0.04,0,0,9,1,0,60,396,-1
1,24.08,0.5,0,0,8,1,1.25,0,0,1,1,0,0,678,-1
1,41.33,1,0,0,3,2,2.25,0,1,0,0,0,0,300,-1
1,20.75,10.25,0,0,8,0,0.71,0,0,2,0,0,49,0,-1
0,36.33,2.125,1,1,9,0,0.085,0,0,1,1,0,50,1187,-1
1,35.42,12,0,0,8,1,14,0,0,8,1,0,0,6590,-1
0,28.67,9.335,0,0,8,1,5.665,0,0,6,1,0,381,168,-1
0,35.17,2.5,0,0,5,0,4.5,0,0,7,1,0,150,1270,-1
0,39.5,4.25,0,0,0,2,6.5,0,0,16,1,0,117,1210,-1
0,39.33,5.875,0,0,2,1,10,0,0,14,0,0,399,0,-1
0,24.33,6.625,1,1,1,0,5.5,0,1,0,0,2,100,0,-1
0,60.08,14.5,0,0,13,7,18,0,0,15,0,0,0,1000,-1
0,23.08,11.5,0,0,3,0,3.5,0,0,9,1,0,56,742,-1
0,26.67,2.71,1,1,2,0,5.25,0,0,1,1,0,211,0,-1
0,48.17,3.5,0,0,12,0,3.5,0,1,0,1,2,230,0,-1
0,41.17,4.04,0,0,2,1,7,0,0,8,1,0,320,0,-1
0,55.92,11.5,0,0,13,7,5,0,0,5,1,0,0,8851,-1
0,53.92,9.625,0,0,11,0,8.665,0,0,5,1,0,0,0,-1
1,18.92,9.25,1,1,0,0,1,0,0,4,0,0,80,500,-1
1,50.08,12.54,0,0,12,0,2.29,0,0,3,0,0,156,0,-1
0,65.42,11,0,0,11,5,20,0,0,7,0,0,22,0,-1
1,17.58,9,0,0,12,0,1.375,0,1,0,0,0,0,0,-1
1,18.83,9.54,0,0,12,0,0.085,0,1,0,1,0,100,0,-1
1,37.75,5.5,0,0,8,0,0.125,0,1,0,0,0,228,0,-1
0,23.25,4,0,0,0,2,0.25,0,1,0,0,0,160,0,-1
0,18.08,5.5,0,0,5,0,0.5,0,1,0,1,0,80,0,-1
1,22.5,8.46,1,1,10,0,2.46,1,1,0,1,0,164,0,-1
0,19.67,0.375,0,0,8,0,2,0,0,2,0,0,80,0,-1
0,22.08,11,0,0,2,0,0.665,0,1,0,1,0,100,0,-1
0,25.17,3.5,0,0,2,0,0.625,0,0,7,1,0,0,7059,-1
1,47.42,3,0,0,10,0,13.875,0,0,2,0,0,519,1704,-1
0,33.5,1.75,0,0,10,1,4.5,0,0,4,0,0,253,857,-1
0,27.67,13.75,0,0,9,0,5.75,0,1,0,0,0,487,500,-1
1,58.42,21,0,0,3,2,10,0,0,13,1,0,0,6700,-1
1,20.67,1.835,0,0,8,0,2.085,0,0,5,1,0,220,2503,-1
0,26.17,0.25,0,0,3,2,0,0,1,0,0,0,0,0,-1
0,21.33,7.5,0,0,12,0,1.415,0,0,1,1,0,80,9800,-1
0,42.83,4.625,0,0,8,0,4.58,0,1,0,1,2,0,0,-1
0,38.17,10.125,0,0,10,0,2.5,0,0,6,1,0,520,196,-1
0,20.5,10,1,1,0,0,2.5,0,1,0,1,2,40,0,-1
0,48.25,25.085,0,0,9,0,1.75,0,0,3,1,0,120,14,-1
0,28.33,5,0,0,9,0,11,0,1,0,0,0,70,0,-1
0,18.5,2,0,0,3,0,1.5,0,0,2,1,0,120,300,-1
0,33.17,3.04,1,1,0,1,2.04,0,0,1,0,0,180,18027,-1
0,45,8.5,0,0,2,1,14,0,0,1,0,0,88,2000,-1
1,19.67,0.21,0,0,8,1,0.29,0,0,11,1,0,80,99,-1
0,21.83,11,0,0,10,0,0.29,0,0,6,1,0,121,0,-1
0,40.25,21.5,0,0,11,5,20,0,0,11,1,0,0,1200,-1
0,41.42,5,0,0,8,1,5,0,0,6,0,0,470,0,-1
1,17.83,11,0,0,10,1,1,0,0,11,1,0,0,3000,-1
0,23.17,11.125,0,0,10,1,0.46,0,0,1,1,0,100,0,-1
0,18.17,10.25,0,0,0,1,1.085,1,1,0,1,0,320,13,1
0,20,11.045,0,0,0,0,2,1,1,0,0,0,136,0,1
0,20,0,0,0,1,0,0.5,1,1,0,1,0,144,0,1
1,20.75,9.54,0,0,3,0,0.04,1,1,0,1,0,200,1000,1
1,24.5,1.75,1,1,0,0,0.165,1,1,0,1,0,132,0,1
0,32.75,2.335,0,0,1,1,5.75,1,1,0,0,0,292,0,1
1,52.17,0,1,1,13,7,0,1,1,0,1,0,0,0,1
1,48.17,1.335,0,0,3,8,0.335,1,1,0,1,0,0,120,1
1,20.42,10.5,1,1,10,1,0,1,1,0,0,0,154,32,1
0,50.75,0.585,0,0,13,7,0,1,1,0,1,0,145,0,1
0,17.08,0.085,1,1,0,0,0.04,1,1,0,1,0,140,722,1
0,18.33,1.21,1,1,11,6,0,1,1,0,1,0,100,0,1
1,32,6,0,0,1,0,1.25,1,1,0,1,0,272,0,1
0,59.67,1.54,0,0,8,0,0.125,0,1,0,0,0,260,0,-1
0,18,0.165,0,0,8,4,0.21,1,1,0,1,0,200,40,-1
0,32.33,2.5,0,0,0,0,1.25,1,1,0,0,0,280,0,1
0,18.08,6.75,1,1,6,0,0.04,1,1,0,1,0,140,0,1
0,38.25,10.125,1,1,5,0,0.125,1,1,0,1,0,160,0,1
0,30.67,2.5,0,0,2,1,2.25,1,1,0,0,2,340,0,1
0,18.58,5.71,0,0,1,0,0.54,1,1,0,1,0,120,0,1
1,19.17,5.415,0,0,3,1,0.29,1,1,0,1,0,80,484,1
1,18.17,10,1,1,8,1,0.165,1,1,0,1,0,340,0,1
0,16.25,0.835,0,0,6,0,0.085,0,1,0,1,2,200,0,1
0,21.17,0.875,1,1,0,1,0.25,1,1,0,1,0,280,204,1
0,23.92,0.585,1,1,2,1,0.125,1,1,0,1,0,240,1,1
0,17.67,4.46,0,0,0,0,0.25,1,1,0,1,2,80,0,1
1,16.5,1.25,0,0,8,0,0.25,1,0,1,1,0,108,98,1
0,23.25,12.625,0,0,0,0,0.125,1,0,2,1,0,0,5552,1
0,17.58,10,0,0,9,1,0.165,1,0,1,1,0,120,1,1
0,29.5,0.58,0,0,9,0,0.29,1,0,1,1,0,340,2803,1
0,18.83,0.415,1,1,0,0,0.165,1,0,1,1,0,200,1,1
1,21.75,1.75,1,1,4,3,0,1,1,0,1,0,160,0,1
0,23,0.75,0,0,6,0,0.5,1,1,0,0,2,320,0,1
1,18.25,10,0,0,9,0,1,1,0,1,1,0,120,1,1
0,25.42,0.54,0,0,9,0,0.165,1,0,1,1,0,272,444,1
0,35.75,2.415,0,0,9,0,0.125,1,0,2,1,0,220,1,1
1,16.08,0.335,0,0,13,7,0,1,0,1,1,0,160,126,1
1,31.92,3.125,0,0,13,7,3.04,1,0,2,0,0,200,4,1
0,69.17,9,0,0,13,7,4,1,0,1,1,0,70,6,1
0,32.92,2.5,0,0,12,0,1.75,1,0,2,0,0,720,0,1
0,16.33,2.75,0,0,12,0,0.665,1,0,1,1,0,80,21,1
0,22.17,12.125,0,0,0,0,3.335,1,0,2,0,0,180,173,1
1,57.58,2,0,0,13,7,6.5,1,0,1,1,0,0,10,1
0,18.25,0.165,0,0,1,0,0.25,1,1,0,0,2,280,0,1
0,23.42,1,0,0,0,0,0.5,1,1,0,0,2,280,0,1
1,15.92,2.875,0,0,8,0,0.085,1,1,0,1,0,120,0,1
1,24.75,13.665,0,0,8,1,1.5,1,1,0,1,0,280,1,1
0,48.75,26.335,1,1,13,7,0,0,1,0,0,0,0,0,1
0,23.5,2.75,0,0,13,7,4.5,1,1,0,1,0,160,25,1
0,18.58,10.29,0,0,13,7,0.415,1,1,0,1,0,80,0,1
0,27.75,1.29,0,0,5,1,0.25,1,1,0,0,2,140,0,1
1,31.75,3,1,1,4,3,0,1,1,0,1,0,160,20,1
1,24.83,4.5,0,0,9,0,1,1,1,0,0,0,360,6,1
0,19,1.75,1,1,0,0,2.335,1,1,0,0,0,112,6,1
1,16.33,0.21,0,0,12,0,0.125,1,1,0,1,0,200,1,1
1,18.58,10,0,0,1,0,0.415,1,1,0,1,0,80,42,1
0,16.25,0,1,1,12,0,0.25,1,1,0,1,0,60,0,1
0,23,0.75,0,0,6,0,0.5,0,1,0,0,2,320,0,1
0,21.17,0.25,1,1,0,1,0.25,1,1,0,1,0,280,204,1
0,17.5,22,2,2,13,8,0,1,1,0,0,1,450,1e+005,-1
0,19.17,0,1,1,6,2,0,1,1,0,0,2,500,1,-1
0,36.75,0.125,1,1,0,0,1.5,1,1,0,0,0,232,113,-1
0,21.25,1.5,0,0,9,0,1.5,1,1,0,1,0,150,8,-1
1,18.08,0.375,2,2,2,7,10,1,1,0,0,2,300,0,-1
1,33.67,0.375,0,0,2,0,0.375,1,1,0,1,0,300,44,-1
0,48.58,0.205,1,1,5,0,0.25,0,0,11,1,0,380,2732,-1
0,33.67,1.25,0,0,9,0,1.165,1,1,0,1,0,120,0,1
1,29.5,1.085,1,1,10,0,1,1,1,0,1,0,280,13,1
0,30.17,1.085,1,1,0,0,0.04,1,1,0,1,0,170,179,1
0,34.83,2.5,1,1,9,0,3,1,1,0,1,2,200,0,1
1,33.25,2.5,1,1,0,0,2.5,1,1,0,0,0,0,2,1
0,34.08,2.5,0,0,0,0,1,1,1,0,1,0,460,16,1
1,25.25,12.5,0,0,1,0,1,1,1,0,0,0,180,1062,1
0,34.75,2.5,0,0,2,2,0.5,1,1,0,1,0,348,0,1
0,27.67,0.75,0,0,8,1,0.165,1,1,0,0,0,220,251,1
0,47.33,6.5,0,0,0,0,1,1,1,0,0,0,0,228,1
1,34.83,1.25,1,1,3,1,0.5,1,1,0,0,0,160,0,1
1,33.25,3,1,1,12,0,2,1,1,0,1,0,180,0,1
0,28,3,0,0,9,0,0.75,1,1,0,0,0,300,67,1
1,39.08,4,0,0,0,0,3,1,1,0,1,0,480,0,1
0,42.75,4.085,0,0,12,0,0.04,1,1,0,1,0,108,100,1
0,26.92,2.25,0,0,3,2,0.5,1,1,0,0,0,640,4000,1
0,33.75,2.75,0,0,3,2,0,1,1,0,1,0,180,0,1
0,38.92,1.75,0,0,5,0,0.5,1,1,0,0,0,300,2,1
0,62.75,7,0,0,11,5,0,1,1,0,1,0,0,12,1
0,26.75,4.5,1,1,0,2,2.5,1,1,0,1,0,200,1210,1
0,63.33,0.54,0,0,0,0,0.585,0,0,3,0,0,180,0,1
0,27.83,1.5,0,0,9,0,2.25,1,0,1,0,0,100,3,1
1,26.17,2,0,0,4,3,0,1,1,0,0,0,276,1,1
0,22.17,0.585,1,1,13,7,0,1,1,0,1,0,100,0,1
0,22.5,11.5,1,1,6,0,1.5,1,1,0,0,0,0,4000,1
0,30.75,1.585,0,0,1,0,0.585,1,1,0,0,2,0,0,1
0,36.67,2,0,0,3,0,0.25,1,1,0,0,0,221,0,1
1,16,0.165,0,0,12,0,1,1,0,2,0,0,320,1,1
0,41.17,1.335,0,0,1,0,0.165,1,1,0,1,0,168,0,1
1,19.5,0.165,0,0,8,0,0.04,1,1,0,0,0,380,0,1
0,32.42,3,0,0,1,0,0.165,1,1,0,0,0,120,0,1
1,36.75,4.71,0,0,13,7,0,1,1,0,1,0,160,0,1
1,30.25,5.5,0,0,5,0,5.5,1,1,0,0,2,100,0,1
0,23.08,2.5,0,0,13,7,0.085,1,1,0,0,0,100,4208,1
0,26.83,0.54,0,0,5,7,0,1,1,0,1,0,100,0,1
0,16.92,0.335,1,1,5,0,0.29,1,1,0,1,2,200,0,1
0,24.42,2,0,0,11,6,0.165,1,0,2,1,0,320,1300,1
0,42.83,1.25,0,0,6,0,13.875,1,0,1,0,0,352,112,1
1,22.75,6.165,0,0,12,0,0.165,1,1,0,1,0,220,1000,1
0,39.42,1.71,1,1,6,0,0.165,1,1,0,1,2,400,0,1
1,23.58,11.5,1,1,5,1,3,1,1,0,0,0,20,16,1
0,21.42,0.75,1,1,7,4,0.75,1,1,0,0,0,132,2,1
0,33,2.5,1,1,9,0,7,1,1,0,0,0,280,0,1
0,26.33,13,0,0,11,6,0,1,1,0,0,0,140,1110,1
1,45,4.585,0,0,5,1,1,1,1,0,0,2,240,0,1
0,26.25,1.54,0,0,9,0,0.125,1,1,0,1,0,100,0,1
1,20.83,0.5,1,1,11,6,1,1,1,0,1,0,260,0,1
0,28.67,14.5,0,0,1,0,0.125,1,1,0,1,0,0,286,1
0,20.67,0.835,1,1,0,0,2,1,1,0,0,2,240,0,1
0,34.42,1.335,0,0,3,2,0.125,1,1,0,0,0,440,4500,1
0,33.58,0.25,0,0,3,2,4,1,1,0,0,2,420,0,1
0,43.17,5,0,0,3,2,2.25,1,1,0,0,0,141,0,1
1,22.67,7,0,0,0,0,0.165,1,1,0,1,0,160,0,1
1,24.33,2.5,1,1,3,2,4.5,1,1,0,1,0,200,456,1
1,56.83,4.25,1,1,13,7,5,1,1,0,0,0,0,4,1
0,22.08,11.46,0,0,5,0,1.585,1,1,0,0,0,100,1212,1
0,34,5.5,1,1,0,0,1.5,1,1,0,0,0,60,0,1
0,22.58,1.5,1,1,12,0,0.54,1,1,0,0,0,120,67,1
0,21.17,0,0,0,0,0,0.5,1,1,0,0,2,0,0,1
0,26.67,14.585,0,0,3,2,0,1,1,0,0,0,178,0,1
0,22.92,0.17,0,0,6,0,0.085,1,1,0,1,2,0,0,1
0,15.17,7,0,0,11,0,1,1,1,0,1,0,600,0,1
0,39.92,5,0,0,3,2,0.21,1,1,0,1,0,550,0,1
0,27.42,12.5,0,0,12,2,0.25,1,1,0,0,0,720,0,1
0,24.75,0.54,0,0,6,0,1,1,1,0,0,0,120,1,1
0,41.17,1.25,1,1,9,0,0.25,1,1,0,1,0,0,195,1
1,33.08,1.625,0,0,1,0,0.54,1,1,0,0,0,0,0,1
0,29.83,2.04,1,1,10,1,0.04,1,1,0,1,0,128,1,1
1,23.58,0.585,1,1,13,7,0.125,1,1,0,1,0,120,87,1
0,26.17,12.5,1,1,5,1,1.25,1,1,0,0,0,0,17,1
0,31,2.085,0,0,0,0,0.085,1,1,0,1,0,300,0,1
0,20.75,5.085,1,1,4,0,0.29,1,1,0,1,0,140,184,1
0,28.92,0.375,0,0,0,0,0.29,1,1,0,1,0,220,140,1
1,51.92,6.5,0,0,3,2,3.085,1,1,0,0,0,73,0,1
1,22.67,0.335,0,0,8,0,0.75,1,1,0,1,2,160,0,1
0,34,5.085,1,1,3,2,1.085,1,1,0,0,0,480,0,1
1,69.5,6,0,0,13,7,0,1,1,0,1,2,0,0,1
1,19.58,0.665,1,1,0,0,1,1,0,1,1,0,2000,2,1
0,16,3.125,0,0,9,0,0.085,1,0,1,1,0,0,6,1
0,17.08,0.25,0,0,8,0,0.335,1,0,4,1,0,160,8,1
0,31.25,2.835,0,0,13,7,0,1,0,5,1,0,176,146,1
0,25.17,3,0,0,0,0,1.25,1,0,1,1,0,0,22,1
1,22.67,0.79,0,0,3,0,0.085,1,1,0,1,0,144,0,1
0,40.58,1.5,0,0,3,2,0,1,1,0,1,2,300,0,1
0,22.25,0.46,0,0,5,0,0.125,1,1,0,0,0,280,55,1
1,22.25,1.25,1,1,13,7,3.25,1,1,0,1,0,280,0,1
0,22.5,0.125,1,1,5,0,0.125,1,1,0,1,0,200,70,1
0,23.58,1.79,0,0,0,0,0.54,1,1,0,0,0,136,1,1
0,38.42,0.705,0,0,0,0,0.375,1,0,2,1,0,225,500,1
1,26.58,2.54,1,1,13,7,0,1,1,0,0,0,180,60,1
0,35,2.5,0,0,3,0,1,1,1,0,0,0,210,0,1
0,20.42,1.085,0,0,8,0,1.5,1,1,0,1,0,108,7,1
0,29.42,1.25,0,0,9,0,1.75,1,1,0,1,0,200,0,1
0,26.17,0.835,0,0,2,0,1.165,1,1,0,1,0,100,0,1
0,33.67,2.165,0,0,0,0,1.5,1,1,0,1,1,120,0,1
0,24.58,1.25,0,0,0,0,0.25,1,1,0,1,0,110,0,1
1,27.67,2.04,0,0,9,0,0.25,1,1,0,0,0,180,50,1
0,37.5,0.835,0,0,11,0,0.04,1,1,0,1,0,120,5,1
0,49.17,2.29,0,0,13,7,0.29,1,1,0,1,0,200,3,1
0,33.58,0.335,1,1,2,0,0.085,1,1,0,1,0,180,0,1
0,51.83,3,1,1,13,7,1.5,1,1,0,1,0,180,4,1
0,22.92,3.165,1,1,0,0,0.165,1,1,0,1,0,160,1058,1
0,21.83,1.54,0,0,5,0,0.085,1,1,0,0,0,356,0,1
0,25.25,1,0,0,12,0,0.5,1,1,0,1,0,200,0,1
0,58.58,2.71,0,0,0,0,2.415,1,1,0,0,0,320,0,1
0,19,0,1,1,13,7,0,1,0,4,1,0,45,1,1
0,19.58,0.585,0,0,13,7,0,1,0,3,1,0,350,769,1
1,53.33,0.165,0,0,13,7,0,1,1,0,0,2,62,27,1
1,27.17,1.25,0,0,13,7,0,1,0,1,1,0,92,300,1
0,25.92,0.875,0,0,5,0,0.375,1,0,2,0,0,174,3,1
0,23.08,0,0,0,5,0,1,1,0,11,1,2,0,0,1
0,39.58,5,0,0,13,7,0,1,0,2,1,0,17,1,1
0,30.58,2.71,1,1,6,0,0.125,1,1,0,0,2,80,0,1
0,17.25,3,0,0,5,0,0.04,1,1,0,0,0,160,40,1
1,17.67,0,1,1,4,7,0,1,1,0,1,0,86,0,1
0,16.5,0.125,0,0,0,0,0.165,1,1,0,1,0,132,0,1
1,27.33,1.665,0,0,13,7,0,1,1,0,1,0,340,1,1
0,31.25,1.125,0,0,13,7,0,1,0,1,1,0,96,19,1
0,20,7,0,0,0,0,0.5,1,1,0,1,0,0,0,1
0,39.5,1.625,0,0,0,0,1.5,1,1,0,1,0,0,316,1
0,36.5,4.25,0,0,8,0,3.5,1,1,0,1,0,454,50,1
0,52.42,1.5,0,0,1,0,3.75,1,1,0,0,0,0,350,1
0,36.17,18.125,0,0,9,0,0.085,1,1,0,1,0,320,3552,1
0,29.67,0.75,1,1,0,0,0.04,1,1,0,1,0,240,0,1
0,36.17,5.5,0,0,3,2,5,1,1,0,1,0,210,687,1
0,25.67,0.29,1,1,0,0,1.5,1,1,0,0,0,160,0,1
1,24.5,2.415,1,1,0,0,0,1,1,0,1,0,120,0,1
0,24.08,0.875,0,0,6,0,0.085,1,0,4,1,0,254,1950,1
0,21.92,0.5,0,0,0,0,0.125,1,1,0,1,0,360,0,1
1,36.58,0.29,0,0,13,7,0,1,0,10,1,0,200,18,1
1,23,1.835,0,0,4,3,0,1,0,1,1,0,200,53,1
1,27.58,3,0,0,6,0,2.79,1,0,1,0,0,280,10,1
0,31.08,3.085,0,0,0,0,2.5,1,0,2,0,0,160,41,1
1,30.42,1.375,0,0,9,1,0.04,1,0,3,1,0,0,33,1
0,22.08,2.335,0,0,5,0,0.75,1,1,0,1,0,180,0,1
0,16.33,4.085,0,0,3,1,0.415,1,1,0,0,0,120,0,1
1,21.92,11.665,0,0,5,1,0.085,1,1,0,1,0,320,5,1
0,21.08,4.125,1,1,3,1,0.04,1,1,0,1,0,140,100,1
0,17.42,6.5,0,0,3,0,0.125,1,1,0,1,0,60,100,1
0,19.17,4,1,1,3,0,1,1,1,0,0,0,360,1000,1
0,20.67,0.415,0,0,0,0,0.125,1,1,0,1,0,0,44,1
0,26.75,2,0,0,1,0,0.75,1,1,0,0,0,80,0,1
0,23.58,0.835,0,0,3,1,0.085,1,1,0,0,0,220,5,1
0,39.17,2.5,1,1,3,1,10,1,1,0,0,2,200,0,1
0,22.75,11.5,0,0,3,0,0.415,1,1,0,1,0,0,0,1
1,16.92,0.5,0,0,3,0,0.165,1,0,6,0,0,240,35,1
0,23.5,3.165,1,1,5,0,0.415,1,0,1,0,0,280,80,1
1,17.33,9.5,0,0,12,0,1.75,1,0,10,0,0,0,10,1
0,23.75,0.415,1,1,0,0,0.04,1,0,2,1,0,128,6,1
0,34.67,1.08,0,0,6,0,1.165,1,1,0,1,2,28,0,1
0,74.83,19,1,1,13,7,0.04,1,0,2,1,0,0,351,1
0,28.17,0.125,1,1,5,0,0.085,1,1,0,1,0,216,2100,1
0,24.5,13.335,1,1,12,0,0.04,1,1,0,0,0,120,475,1
0,18.83,3.54,1,1,13,7,0,1,1,0,0,0,180,1,1
1,47.25,0.75,0,0,8,1,2.75,0,0,1,1,0,333,892,-1
0,24.17,0.875,0,0,8,0,4.625,0,0,2,0,0,520,2000,-1
0,39.25,9.5,0,0,6,0,6.5,0,0,14,1,0,240,4607,-1
1,20.5,11.835,0,0,0,1,6,0,1,0,1,0,340,0,-1
1,18.83,4.415,1,1,0,1,3,0,1,0,1,0,240,0,-1
0,19.17,9.5,0,0,9,0,1.5,0,1,0,1,0,120,2206,-1
1,25,0.875,0,0,10,1,1.04,0,1,0,0,0,160,5860,-1
0,20.17,9.25,0,0,0,0,1.665,0,0,3,0,0,40,28,-1
0,25.75,0.5,0,0,0,0,1.46,0,0,5,0,0,312,0,-1
0,20.42,7,0,0,0,0,1.625,0,0,3,1,0,200,1391,-1
0,39,5,0,0,2,0,3.5,0,0,10,0,0,0,0,-1
1,64.08,0.165,0,0,13,7,0,0,0,1,1,0,232,100,-1
0,28.25,5.125,0,0,10,0,4.75,0,0,2,1,0,420,7,-1
1,28.75,3.75,0,0,0,0,1.085,0,0,1,0,0,371,0,-1
0,31.33,19.5,0,0,0,0,7,0,0,16,1,0,0,5000,-1
1,18.92,9,0,0,12,0,0.75,0,0,2,1,0,88,591,-1
1,24.75,3,0,0,8,1,1.835,0,0,19,1,0,0,500,-1
1,30.67,12,0,0,0,0,2,0,0,1,1,0,220,19,-1
0,21,4.79,1,1,9,0,2.25,0,0,1,0,0,80,300,-1
0,13.75,4,1,1,9,0,1.75,0,0,2,0,0,120,1000,-1
1,46,4,0,0,4,3,0,0,1,0,1,0,100,960,-1
1,44.33,0,0,0,0,0,2.5,0,1,0,1,0,0,0,-1
0,20.25,9.96,0,0,11,6,0,0,1,0,1,0,0,0,-1
0,22.67,2.54,1,1,0,1,2.585,0,1,0,1,0,0,0,-1
1,60.92,5,0,0,12,0,4,0,0,4,1,0,0,99,-1
0,16.08,0.75,0,0,0,0,1.75,0,0,5,0,0,352,690,-1
1,28.17,0.375,0,0,8,0,0.585,0,0,4,1,0,80,0,-1
0,39.17,1.71,0,0,10,0,0.125,0,0,5,0,0,480,0,-1
1,30,5.29,0,0,11,6,2.25,0,0,5,0,0,99,500,-1
0,22.83,3,0,0,6,0,1.29,0,0,1,1,0,260,800,-1
1,22.5,8.5,0,0,8,0,1.75,0,0,10,1,0,80,990,1
1,28.58,1.665,0,0,8,0,2.415,0,1,0,0,0,440,0,1
0,45.17,1.5,0,0,0,0,2.5,0,1,0,0,0,140,0,1
0,41.58,1.75,0,0,5,0,0.21,0,1,0,1,0,160,0,1
1,57.08,0.335,0,0,3,2,1,0,1,0,0,0,252,2197,1
1,55.75,7.08,0,0,5,1,6.75,0,0,3,0,0,100,50,1
0,43.25,25.21,0,0,8,1,0.21,0,0,1,1,0,760,90,1
1,25.33,2.085,0,0,0,1,2.75,0,1,0,0,0,360,1,1
1,24.58,0.67,0,0,12,1,1.75,0,1,0,1,0,400,0,1
0,43.17,2.25,0,0,3,2,0.75,0,1,0,1,0,560,0,1
0,40.92,0.835,0,0,13,7,0,0,1,0,1,0,130,1,1
0,31.83,2.5,0,0,12,0,7.5,0,1,0,0,0,523,0,1
1,33.92,1.585,1,1,13,7,0,0,1,0,1,0,320,0,1
1,24.92,1.25,0,0,13,7,0,0,1,0,1,0,80,0,1
0,35.25,3.165,0,0,10,1,3.75,0,1,0,0,0,680,0,1
0,34.25,1.75,0,0,9,2,0.25,0,1,0,0,0,163,0,1
0,19.42,1.5,1,1,2,0,2,0,1,0,0,0,100,20,1
0,42.75,3,0,0,3,2,1,0,1,0,1,0,0,200,1
0,19.67,10,1,1,5,1,0.835,0,1,0,0,0,140,0,1
0,36.33,3.79,0,0,9,0,1.165,0,1,0,0,0,200,0,1
0,30.08,1.04,1,1,3,2,0.5,0,0,10,0,0,132,28,1
0,44.25,11,1,1,1,0,1.5,0,1,0,1,2,0,0,1
0,23.58,0.46,1,1,9,0,2.625,0,0,6,0,0,208,347,1
0,23.92,1.5,0,0,1,1,1.875,0,0,6,1,0,200,327,-1
0,33.17,1,0,0,10,0,0.75,0,0,7,0,0,340,4071,-1
0,48.33,12,0,0,6,0,16,0,1,0,1,2,110,0,-1
0,76.75,22.29,0,0,11,5,12.75,0,0,1,0,0,0,109,-1
0,51.33,10,0,0,3,2,0,0,0,11,1,0,0,1249,-1
0,34.75,15,0,0,7,4,5.375,0,0,9,0,0,0,134,-1
0,38.58,3.335,0,0,9,0,4,0,0,14,1,0,383,1344,-1
1,22.42,11.25,1,1,10,1,0.75,0,0,4,1,0,0,321,-1
0,41.92,0.42,0,0,0,1,0.21,0,0,6,1,0,220,948,-1
0,29.58,4.5,0,0,9,0,7.5,0,0,2,0,0,330,0,-1
1,32.17,1.46,0,0,9,0,1.085,0,0,16,1,0,120,2079,-1
0,51.42,0.04,0,0,10,1,0.04,0,1,0,1,0,0,3000,-1
1,22.83,2.29,0,0,8,1,2.29,0,0,7,0,0,140,2384,-1
1,25,12.33,0,0,2,1,3.5,0,0,6,1,0,400,458,-1
0,26.75,1.125,0,0,10,1,1.25,0,1,0,1,0,0,5298,-1
0,23.33,1.5,0,0,0,1,1.415,0,1,0,1,0,422,200,-1
0,24.42,12.335,0,0,8,1,1.585,0,1,0,0,0,120,0,-1
0,42.17,5.04,0,0,8,1,12.75,0,1,0,0,0,92,0,-1
1,20.83,3,0,0,12,0,0.04,0,1,0,1,0,100,0,-1
0,23.08,11.5,0,0,9,1,2.125,0,0,11,0,0,290,284,-1
1,25.17,2.875,0,0,10,1,0.875,0,1,0,1,0,360,0,-1
0,43.08,0.375,1,1,0,0,0.375,0,0,8,0,0,300,162,-1
1,35.75,0.915,0,0,12,0,0.75,0,0,4,1,0,0,1583,-1
0,59.5,2.75,0,0,9,0,1.75,0,0,5,0,0,60,58,-1
0,21,3,1,1,1,0,1.085,0,0,8,0,0,160,1,-1
0,21.92,0.54,1,1,10,0,0.04,0,0,1,0,0,840,59,-1
1,65.17,14,0,0,13,7,0,0,0,11,0,0,0,1400,-1
1,20.33,10,0,0,0,1,1,0,0,4,1,0,50,1465,-1
0,32.25,0.165,1,1,0,1,3.25,0,0,1,0,0,432,8000,-1
0,30.17,0.5,0,0,0,0,1.75,0,0,11,1,0,32,540,-1
0,25.17,6,0,0,0,0,1,0,0,3,1,0,0,0,-1
0,39.17,1.625,0,0,0,0,1.5,0,0,10,1,0,186,4700,-1
0,39.08,6,0,0,6,0,1.29,0,0,5,0,0,108,1097,-1
0,31.67,0.83,0,0,10,0,1.335,0,0,8,0,0,303,3290,-1
0,41,0.04,0,0,11,0,0.04,1,0,1,1,2,560,0,-1
0,48.5,4.25,0,0,6,0,0.125,0,1,0,0,0,225,0,-1
0,32.67,9,1,1,9,1,5.25,0,1,0,0,0,154,0,-1
1,28.08,15,1,1,11,5,0,0,1,0,1,0,0,13212,-1
0,73.42,17.75,0,0,13,7,0,0,1,0,0,0,0,0,-1
0,64.08,20,0,0,10,1,17.5,0,0,9,0,0,0,1000,-1
0,51.58,15,0,0,0,0,8.5,0,0,9,1,0,0,0,-1
0,26.67,1.75,1,1,0,0,1,0,0,5,0,0,160,5777,-1
0,25.33,0.58,0,0,0,0,0.29,0,0,7,0,0,96,5124,-1
0,30.17,6.5,0,0,2,0,3.125,0,0,8,1,0,330,1200,-1
0,27,0.75,0,0,0,1,4.25,0,0,3,0,0,312,150,-1
0,34.17,5.25,0,0,9,0,0.085,1,1,0,0,0,290,6,-1
0,38.67,0.21,0,0,5,0,0.085,0,1,0,0,0,280,0,-1
0,25.75,0.75,0,0,0,2,0.25,0,1,0,1,0,349,23,-1
1,46.08,3,0,0,0,0,2.375,0,0,8,0,0,396,4159,-1
1,21.5,6,0,0,12,0,2.5,0,0,3,1,0,80,918,-1
0,20.5,2.415,0,0,0,0,2,0,0,11,0,0,200,3000,-1
1,29.5,0.46,0,0,5,0,0.54,0,0,4,1,0,380,500,-1
0,29.83,1.25,1,1,5,0,0.25,1,1,0,1,0,224,0,1
0,20.08,0.25,0,0,8,0,0.125,1,1,0,1,0,200,0,1
0,23.42,0.585,0,0,0,1,0.085,0,1,0,1,0,180,0,1
1,29.58,1.75,1,1,5,0,1.25,1,1,0,0,0,280,0,1
0,16.17,0.04,0,0,0,0,0.04,1,1,0,1,0,0,0,-1
0,32.33,3.5,0,0,5,0,0.5,1,1,0,0,0,232,0,1
0,47.83,4.165,0,0,10,2,0.085,1,1,0,0,0,520,0,1
0,20,1.25,1,1,5,0,0.125,1,1,0,1,0,140,4,1
0,27.58,3.25,1,1,8,1,5.085,1,0,2,0,0,369,1,1
0,22,0.79,0,0,9,0,0.29,1,0,1,1,0,420,283,1
0,19.33,10.915,0,0,0,2,0.585,1,0,2,0,0,200,7,1
1,38.33,4.415,0,0,0,0,0.125,1,1,0,1,0,160,0,1
0,29.42,1.25,0,0,0,1,0.25,1,0,2,0,0,400,108,1
0,22.67,0.75,0,0,3,0,1.585,1,0,1,0,0,400,9,1
0,32.25,14,1,1,13,7,0,1,0,2,1,0,160,1,1
0,29.58,4.75,0,0,6,0,2,1,0,1,0,0,460,68,1
0,18.42,10.415,1,1,12,0,0.125,0,1,0,1,0,120,375,1
0,22.17,2.25,0,0,3,0,0.125,1,1,0,1,0,160,10,1
0,22.67,0.165,0,0,0,3,2.25,1,1,0,0,2,0,0,-1
0,18.83,0,0,0,8,0,0.665,1,1,0,1,0,160,1,1
0,21.58,0.79,1,1,2,0,0.665,1,1,0,1,0,160,0,1
0,23.75,12,0,0,0,0,2.085,1,1,0,1,2,80,0,1
0,36.08,2.54,0,0,13,7,0,1,1,0,1,0,0,1000,1
0,29.25,13,0,0,1,1,0.5,1,1,0,1,0,228,0,1
1,19.58,0.665,0,0,9,0,1.665,1,1,0,1,0,220,5,1
1,22.92,1.25,0,0,8,0,0.25,1,1,0,0,0,120,809,1
1,27.25,0.29,0,0,6,1,0.125,1,0,1,0,0,272,108,1
1,38.75,1.5,0,0,13,7,0,1,1,0,1,0,76,0,1
0,32.42,2.165,1,1,5,7,0,1,1,0,1,0,120,0,1
1,23.75,0.71,0,0,9,0,0.25,1,0,1,0,0,240,4,1
0,18.17,2.46,0,0,0,4,0.96,1,0,2,0,0,160,587,1
0,40.92,0.5,1,1,6,0,0.5,1,1,0,0,0,130,0,1
0,19.5,9.585,0,0,12,0,0.79,1,1,0,1,0,80,350,1
0,28.58,3.625,0,0,12,0,0.25,1,1,0,0,0,100,0,1
0,35.58,0.75,0,0,5,0,1.5,1,1,0,0,0,231,0,1
0,34.17,2.75,0,0,3,2,2.5,1,1,0,0,0,232,200,1
0,31.58,0.75,1,1,12,0,3.5,1,1,0,0,0,320,0,1
1,52.5,7,0,0,12,1,3,1,1,0,1,0,0,0,1
0,36.17,0.42,1,1,9,0,0.29,1,1,0,0,0,309,2,1
0,37.33,2.665,0,0,2,0,0.165,1,1,0,0,0,0,501,1
1,20.83,8.5,0,0,0,0,0.165,1,1,0,1,0,0,351,1
0,24.08,9,0,0,12,0,0.25,1,1,0,0,0,0,0,1
0,25.58,0.335,0,0,5,1,3.5,1,1,0,0,0,340,0,1
1,35.17,3.75,0,0,13,7,0,1,0,6,1,0,0,200,1
0,48.08,3.75,0,0,3,2,1,1,1,0,1,0,100,2,1
1,15.83,7.625,0,0,8,0,0.125,1,0,1,0,0,0,160,1
1,22.5,0.415,0,0,3,0,0.335,1,1,0,0,2,144,0,1
0,21.5,11.5,0,0,3,0,0.5,0,1,0,0,0,100,68,1
1,23.58,0.83,0,0,8,0,0.415,1,0,1,0,0,200,11,1
1,21.08,5,1,1,13,7,0,1,1,0,1,0,0,0,1
0,25.67,3.25,0,0,0,1,2.29,1,0,1,0,0,416,21,1
1,38.92,1.665,0,0,12,0,0.25,1,1,0,1,0,0,390,1
1,15.75,0.375,0,0,0,0,1,1,1,0,1,0,120,18,1
1,28.58,3.75,0,0,0,0,0.25,1,0,1,0,0,40,154,1
0,22.25,9,0,0,12,0,0.085,1,1,0,1,0,0,0,1
0,29.83,3.5,0,0,0,0,0.165,1,1,0,1,0,216,0,1
1,23.5,1.5,0,0,9,0,0.875,1,1,0,0,0,160,0,1
0,32.08,4,1,1,2,0,1.5,1,1,0,0,0,120,0,1
0,31.08,1.5,1,1,9,0,0.04,1,1,0,1,2,160,0,1
0,31.83,0.04,1,1,6,0,0.04,1,1,0,1,0,0,0,1
1,21.75,11.75,0,0,0,0,0.25,1,1,0,0,0,180,0,1
1,17.92,0.54,0,0,0,0,1.75,1,0,1,0,0,80,5,1
0,30.33,0.5,0,0,1,1,0.085,1,1,0,0,2,252,0,1
0,51.83,2.04,1,1,13,7,1.5,1,1,0,1,0,120,1,1
0,47.17,5.835,0,0,9,0,5.5,1,1,0,1,0,465,150,1
0,25.83,12.835,0,0,2,0,0.5,1,1,0,1,0,0,2,1
1,50.25,0.835,0,0,12,0,0.5,1,1,0,0,0,240,117,1
1,37.33,2.5,0,0,3,1,0.21,1,1,0,1,0,260,246,1
1,41.58,1.04,0,0,12,0,0.665,1,1,0,1,0,240,237,1
1,30.58,10.665,0,0,8,1,0.085,1,0,12,0,0,129,3,1
0,19.42,7.25,0,0,6,0,0.04,1,0,1,1,0,100,1,1
1,17.92,10.21,0,0,13,7,0,1,1,0,1,0,0,50,1
1,20.08,1.25,0,0,0,0,0,1,1,0,1,0,0,0,1
0,19.5,0.29,0,0,5,0,0.29,1,1,0,1,0,280,364,1
0,27.83,1,1,1,1,1,3,1,1,0,1,0,176,537,1
0,17.08,3.29,0,0,3,0,0.335,1,1,0,0,0,140,2,1
0,36.42,0.75,1,1,1,0,0.585,1,1,0,1,0,240,3,1
0,40.58,3.29,0,0,6,0,3.5,1,1,0,0,2,400,0,1
0,21.08,10.085,1,1,11,1,1.25,1,1,0,1,0,260,0,1
1,22.67,0.75,0,0,0,0,2,1,0,2,0,0,200,394,1
1,25.25,13.5,1,1,13,7,2,1,0,1,0,0,200,1,1
0,17.92,0.205,0,0,12,0,0.04,1,1,0,1,0,280,750,1
0,35,3.375,0,0,0,1,8.29,1,1,0,0,0,0,0,1

credit-a.csv


  本人小白一枚,请各位看客多多指教

深度学习之逻辑回归的实现 -- sigmoid的更多相关文章

  1. TensorFlow 深度学习笔记 逻辑回归 实践篇

    Practical Aspects of Learning 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有 ...

  2. 统计学习:逻辑回归与交叉熵损失(Pytorch实现)

    1. Logistic 分布和对率回归 监督学习的模型可以是概率模型或非概率模型,由条件概率分布\(P(Y|\bm{X})\)或决 策函数(decision function)\(Y=f(\bm{X} ...

  3. 《神经网络和深度学习》系列文章三:sigmoid神经元

    出处: Michael Nielsen的<Neural Network and Deep Leraning>,点击末尾“阅读原文”即可查看英文原文. 本节译者:哈工大SCIR硕士生 徐伟 ...

  4. 深度学习之softmax回归

    前言            以下内容是个人学习之后的感悟,转载请注明出处~ softmax回归 首先,我们看一下sigmod激活函数,如下图,它经常用于逻辑回归,将一个real value映射到(0, ...

  5. 逻辑回归为什么用sigmoid函数

    Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷. 因此,使用logistic函数(或称作sigmoid函数)将自 ...

  6. 【深度学习】softmax回归——原理、one-hot编码、结构和运算、交叉熵损失

    1. softmax回归是分类问题 回归(Regression)是用于预测某个值为"多少"的问题,如房屋的价格.患者住院的天数等. 分类(Classification)不是问&qu ...

  7. 深度学习基础系列(三)| sigmoid、tanh和relu激活函数的直观解释

    常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) ...

  8. 动手学深度学习4-线性回归的pytorch简洁实现

    导入同样导入之前的包或者模块 生成数据集 通过pytorch读取数据 定义模型 初始化模型 定义损失函数 定义优化算法 训练模型 小结 本节利用pytorch中的模块,生成一个更加简洁的代码来实现同样 ...

  9. 深度学习在美团点评推荐平台排序中的应用&& wide&&deep推荐系统模型--学习笔记

    写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运 ...

随机推荐

  1. 神经网络AI加速器技术

    神经网络AI加速器技术 能够直接加速卷积神经网络,还能够直接运行常见的网络框架,如TensorFlow.Caffe.PyTorch,DarkNet等,支持用户定制化的网络和计算类型. 功能特点: ● ...

  2. Kaggle上的犬种识别(ImageNet Dogs)

    Kaggle上的犬种识别(ImageNet Dogs) Dog Breed Identification (ImageNet Dogs) on Kaggle 在本节中,将解决在Kaggle竞赛中的犬种 ...

  3. 利用NVIDIA NGC的TensorRT容器优化和加速人工智能推理

    利用NVIDIA NGC的TensorRT容器优化和加速人工智能推理 Optimizing and Accelerating AI Inference with the TensorRT Contai ...

  4. python2向python3移植问题

    问题: payload = "A"*140 # padding ropchain = p32(puts_plt) ropchain += p32(entry_point) ropc ...

  5. QT Dialog模态与非模态

    模态 // 创建对话框窗口 TestDialog* dlg = new TestDialog(this); // 阻塞程序的运行 dlg->exec(); 这样的话,当运行对话窗口的时候,会阻塞 ...

  6. 在VScode 中使用RT-Thread Studio初体验

    前言 工欲善其事,必先利其器,VScode是什么东东,想必大家都非常熟悉了,丰富的插件,有好的开发界面,是很多程序开发者的不二之选,RT-Thread竟然也开发了Vscode插件,真的是非常的nice ...

  7. Nginx为什么快到根本停不下来?

    Nginx 是一个免费的,开源的,高性能的 HTTP 服务器和反向代理,以及 IMAP / POP3 代理服务器. 图片来自 Pexels Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资 ...

  8. 【Linux进阶】使用grep、find、sed以及awk进行文本操作

    目录 一.元字符 二.grep命令 1. 过滤出包含某字符串的行 2. 过滤出以某字符串开头(结尾)的行 3. 过滤出包含某字符串及其相邻的行 4. 过滤出不包含某关键字的行 5. 过滤出包含多个字符 ...

  9. HTTP头部POST表单详解

    2 POST /hello/checkUser.html?opt=xxx HTTP/1.1 方法的声明,Get,Post,Delete等 3 Accept: */* 4 Referer: http:/ ...

  10. 微信获取信息发生错误(两个access_token的区别),错误代码:40001,说明:invalid credential, access_token is invalid or not latest hints

    微信有两个access_token,一个是基础access_token,一个是网页授权access_token. 想要获取不带unionid的用户信息(以下链接)使用基础access_token ht ...