1264: [AHOI2006]基因匹配Match

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 982  Solved: 635
[Submit][Status][Discuss]

Description

基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球上只有4种),而更奇怪的是,组成DNA序列的每一种碱基在该序列中正好出现5次!这样如果一个DNA序列有N种不同的碱基构成,那么它的长度一定是5N。 卡卡醒来后向可可叙述了这个奇怪的梦,而可可这些日子正在研究生物信息学中的基因匹配问题,于是他决定为这个奇怪星球上的生物写一个简单的DNA匹配程序。 为了描述基因匹配的原理,我们需要先定义子序列的概念:若从一个DNA序列(字符串)s中任意抽取一些碱基(字符),将它们仍按在s中的顺序排列成一个新串u,则称u是s的一个子序列。对于两个DNA序列s1和s2,如果存在一个序列u同时成为s1和s2的子序列,则称u是s1和s2的公共子序列。 卡卡已知两个DNA序列s1和s2,求s1和s2的最大匹配就是指s1和s2最长公共子序列的长度。 [任务] 编写一个程序:  从输入文件中读入两个等长的DNA序列;  计算它们的最大匹配;  向输出文件打印你得到的结果。

Input

输入文件中第一行有一个整数N,表示这个星球上某种生物使用了N种不同的碱基,以后将它们编号为1…N的整数。 以下还有两行,每行描述一个DNA序列:包含5N个1…N的整数,且每一个整数在对应的序列中正好出现5次。

Output

输出文件中只有一个整数,即两个DNA序列的最大匹配数目。

Sample Input

2
1 1 2 2 1 1 2 1 2 2
1 2 2 2 1 1 2 2 1 1

Sample Output

7

HINT

[数据约束和评分方法]
60%的测试数据中:1<=N <= 1 000
100%的测试数据中:1<=N <= 20 000

Source

TLE

#include<cstdio>
#include<iostream>
using namespace std;
int read(){
register int x=;bool f=;
register char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return f?x:-x;
}
const int N=1e5+;
int n,a[N],b[N],f[][N];
int main(){
n=read();n*=;
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) b[i]=read();
int now=;
for(int i=;i<=n;i++){
now^=;
for(int j=;j<=n;j++){
if(a[i]==b[j]){
f[now][j]=f[now^][j-]+;
}
else{
f[now][j]=max(f[now^][j],f[now][j-]);
}
}
}
printf("%d",f[now][n]);
return ;
}

AC

//f[k]表示s2匹配到s1的k位置,最大公共子串的长度
#include<cstdio>
#include<iostream>
using namespace std;
int read(){
register int x=;bool f=;
register char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return f?x:-x;
}
const int N=1e5+;
int n,ans,pos[N][],f[N];
int lowbit(int x){
return x&-x;
}
void updata(int x,int val){
for(int i=x;i<=n;i+=lowbit(i)) f[i]=max(f[i],val);
}
int query(int x){
int res=;
for(int i=x;i;i-=lowbit(i)) res=max(res,f[i]);
return res;
}
int main(){
n=read();n*=;
for(int i=,x;i<=n;i++) x=read(),pos[x][++pos[x][]]=i;
//加树状数组维护降至O(nlogn)
for(int i=,x;i<=n;i++){
x=read();
for(int j=;j;j--){
int k=pos[x][j];//s1[j]=s2[1]
f[k]=max(f[k],query(k-)+);
updata(k,f[k]);
ans=max(ans,f[k]);
}
}
printf("%d",ans);
return ;
}

1264: [AHOI2006]基因匹配Match的更多相关文章

  1. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

  2. BZOJ 1264: [AHOI2006]基因匹配Match( LCS )

    序列最大长度2w * 5 = 10w, O(n²)的LCS会T.. LCS 只有当a[i] == b[j]时, 才能更新答案, 我们可以记录n个数在第一个序列中出现的5个位置, 然后从左往右扫第二个序 ...

  3. bzoj 1264: [AHOI2006]基因匹配Match

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

  4. BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

  5. 1264: [AHOI2006]基因匹配Match(动态规划神题)

    1264: [AHOI2006]基因匹配Match 题目:传送门 简要题意: 给出两个序列.每个序列都由n种不同的数字组成,保证每个序列种每种数字都会出现5次(位置不一定一样),也就是序列长度为5*n ...

  6. bzoj 1264: [AHOI2006]基因匹配Match (树状数组优化dp)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1264 思路: n大小为20000*5,而一般的dp求最长公共子序列复杂度是 n*n的,所以我 ...

  7. bzoj 1264 [AHOI2006]基因匹配Match dp + 树状数组

    思路:好难想啊, 考虑到应该从每个数字只有5个数字下手, 但是不知道到底该怎么写.. 首先我们将第一个串按数字的种类分类, 每一类里面有5个, 然后将第二个串里面的数字一个一个加,如果一个加入的第 i ...

  8. BZOJ 1264 AHOI2006 基因匹配Match 动态规划+树状数组

    题目大意:给定n个数和两个长度为n*5的序列,每一个数恰好出现5次,求两个序列的LCS n<=20000.序列长度就是10W.朴素的O(n^2)一定会超时 所以我们考虑LCS的一些性质 LCS的 ...

  9. BZOJ 1264: [AHOI2006]基因匹配Match DP_树状数组_LCS转LIS

    由于有重复数字,我们以一个序列为基准,另一个序列以第一个序列每个数所在下标为这个序列每个数对应的值. 注意的是,拆值的时候按照在第一个序列中的位置从大到小排,强制只能选一个. 最后跑一边最长上升子序列 ...

随机推荐

  1. [转载]T-SQL(MSSQL)语句查询执行顺序

    注意:笔者经过实验和查阅资料,已在原作基础上做了部分更改.更改不代表原作观点,查看原作请点击下方链接. 原文出处: 作者:张龙豪 链接:http://www.cnblogs.com/knowledge ...

  2. 一步一步HTML5粒子编辑器

    写在前面 大家阅读此文之前,可以先看一篇MiloYip的文章:用JavaScript玩转游戏物理(一)运动学模拟与粒子系统,看完之后再看此文,更加容易理解. MiloYip使用的粒子是canvas中绘 ...

  3. ae arcgis engine 关于面转线的方法和注意事项

    代码很简单,如下 private void barButtonItem1_ItemClick(object sender, DevExpress.XtraBars.ItemClickEventArgs ...

  4. VS2012 单元测试之泛型类(Generics Unit Test)

    关于单元测试,如果不会用可以参照我的上篇博文————在Visual Studio 2012使用单元测试 首先分享一篇博文,[Visual Studio] 开启Visual Studio 2012通过右 ...

  5. MDM证书申请的流程

    MDM证书申请的流程 整个流程分为两部分:vendor,customer. 一.Vendor 1.成为一个 MDM Vendor 1) 首先你需要拥有一个 Apple Enterprise accou ...

  6. iOS 开发中的争议(一)

    序言 打算分享一些有争议的话题,并且表达一下我的看法.这是该系列的第一篇,我想讨论的是:类的成员变量应该如何定义? 在 Objective-C 的语言的早期,类的私有成员变量是只能定义在 .h 的头文 ...

  7. (三)Maven仓库介绍与本地仓库配置

    1.Maven本地仓库/远程仓库的基本介绍 示意图: 本地仓库是指存在于我们本机的仓库,在我们加入依赖时候,首先会跑到我们的本地仓库去找,如果找不到则会跑到远程仓库中去找.对于依赖的包大家可以从这个地 ...

  8. Linux监控工具介绍系列——free

    在Linux系统中,我们查看.监控系统内存使用情况,一般最常用的命令就是free.free命令其实非常简单,参数也非常简单,但是里面很多知识点未必你都掌握了.下面总结一下我所了解的free命令.如有不 ...

  9. JavaScript:内存泄露、性能调优

    1.在进行JS内存泄露检查之前,先要了解JS的内存管理: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Manageme ...

  10. shell实现SSH自动登陆

    h2:first-child, body>h1:first-child, body>h1:first-child+h2, body>h3:first-child, body>h ...