P2179-[NOI2012]骑行川藏【导数,二分】
正题
题目链接:https://www.luogu.com.cn/problem/P2179
题目大意
给出\(E\)和\(n\)个\(s_i,k_i,u_i\)求一个序列\(v_i\)满足
\]
的情况下最小化
\]
\(1\leq n\leq 10^4\)
解题思路
洛谷题解上一个十分神奇的做法看起来。(主要是看不懂拉格朗日乘数法/kk)
首先考虑对于段路的行驶时间\(t_i=\frac{s_i}{v_i}\),我们可以画出消耗的能量\(E\)和\(t_i\)的函数。
对于函数\(f(E)=t_i\)不难发现的是在\(v_i\geq u_i\)的情况下\(E\)越小这个函数对应位置的导数越小。
也就是消耗单位能量减少的时间也就越少,性价比就越低。而我们现在要给每段路分配一个\(t_i\)使得消耗能量和等于\(E\)且\(t_i\)和最小的话。
根据贪心的思想有选出若干个的\(t_i\)满足对应位置的导数相等。
那么我们就找到了所有路的共性,考虑二分这个导数,但是我们先对这个函数\(f(v)=\frac{t}{E}\)求个导。
\]
\]
然后我们二分出\(f'(v_i)=x\)然后再二分出对应的速度\(v_i\)就好了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e4+10;
int n;double E,s[N],k[N],v[N];
double getv(double x,int p){
double l=max(v[p],0.0),r=100000;
for(int i=1;i<=100;i++){
double V=(l+r)/2.0;
if(-2.0*k[p]*V*V*x*(V-v[p])<1.0)l=V;
else r=V;
}
return (l+r)/2.0;
}
double check(double x){
double E=0;
for(int i=1;i<=n;i++){
double V=getv(x,i);
E+=k[i]*s[i]*(V-v[i])*(V-v[i]);
}
return E;
}
int main()
{
scanf("%d",&n);scanf("%lf",&E);
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf",&s[i],&k[i],&v[i]);
double l=-1e5,r=0;
for(int i=1;i<=100;i++){
double mid=(l+r)/2.0;
if(check(mid)<=E)l=mid;
else r=mid;
}
double mid=(l+r)/2.0,ans=0;
for(int i=1;i<=n;i++)
ans+=s[i]/getv(mid,i);
printf("%.12lf\n",ans);
return 0;
}
P2179-[NOI2012]骑行川藏【导数,二分】的更多相关文章
- Luogu P2179 [NOI2012]骑行川藏
题意 给定 \(n\) 个路段,每个路段用三个实数 \(s_i,k_i,v^\prime_i\) 描述,最小化 \[F(v_1,\cdots v_n)=\sum\limits_{i=1}^{n}\fr ...
- 【洛谷】P2179 [NOI2012]骑行川藏
题解 感谢小迪给我讲题啊,这题小迪写挺好的我就不写了吧 小迪的题解 代码 #include <iostream> #include <cstdio> #include < ...
- 洛谷P2179 [NOI2012]骑行川藏(拉格朗日乘数法)
题面 传送门 题解 看\(mashirosky\)大佬的题解吧--这里 //minamoto #include<bits/stdc++.h> #define R register #def ...
- bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘
2876: [Noi2012]骑行川藏 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1033 Solved: ...
- 2876: [Noi2012]骑行川藏 - BZOJ
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- bzoj2876 [Noi2012]骑行川藏
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)
题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...
- [NOI2012] 骑行川藏 | 求导 二分
一个能看的题解!预备知识只有高中数学的[导数].不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )! 如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1.2节就 ...
- bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】
详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...
- 题解 洛谷 P2179 【[NOI2012]骑行川藏】
题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{ ...
随机推荐
- redis数据同步之redis-shake
redis-shake简介 redis-shake是阿里开源的用于redis数据同步的工具,基本功能有: 恢复restore:将RDB文件恢复到目的redis数据库. 备份dump:将源redis的全 ...
- .Net 5 新特性之--支持字典在迭代中进行修改
我们都知道以前字典迭代中是不支持动态修改的[否则会报错::"Collection was modified; enumeration operation may not execute.&q ...
- mzy git学习,git协同开发忽略文档配置以及一些杂点(九)
回忆一个电脑多账户问题 之前也说了,如果使用ssh登陆的话,一个电脑就只能登陆一个账号了,不像通过凭据可以切换(但是其实也可以每次去生成新的公钥和私钥,只要你不嫌麻烦) 再次补充: ssh-keyge ...
- Spring之AspectJ
时间:2017-2-4 21:12 --AspectJ简介1.AspectJ是一个基于Java语言的AOP框架.2.Spring2.0以后新增了对AspectJ切点表达式的支持.3.@AspectJ是 ...
- new一个对象的时候,实际做了些什么
当我们说new一个对象的时候,实际做了些什么, 可以参考下图理解
- linux上安装Docker (非常简单的安装方法) 2019
Docker的三大核心概念:镜像.容器.仓库 镜像:类似虚拟机的镜像.用俗话说就是安装文件. 容器:类似一个轻量级的沙箱,容器是从镜像创建应用运行实例, 可以将其启动.开始.停止.删除.而这些容器都是 ...
- TensorFlow-Slim 简介+Demo
github介绍:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim 基于slim实现的yolo- ...
- DNS重新绑定攻击
来自微信外挂的安全风险 DNS重新绑定攻击 DDNS 动态域名设置
- SQL语句之基本使用
1.sql语法 一些重要的SQL命令: SELECT - 从数据库中提取数据 UPDATE - 更新数据库中的数据 DELETE - 从数据库中删除数据 INSERT INTO - 向数据库中插入新数 ...
- 被面试官问懵:TCP 四次挥手收到乱序的 FIN 包会如何处理?
摘要:收到个读者的问题,他在面试的时候,被搞懵了,因为面试官问了他这么一个网络问题. 本文分享自华为云社区<TCP 四次挥手收到乱序的 FIN 包会如何处理?>,作者:小林coding . ...