正题

题目链接:https://www.luogu.com.cn/problem/CF235D


题目大意

给出一棵基环树,每次随机选择一个点让权值加上这个点的连通块大小然后删掉这个点。

求删光所有点时期望权值。

\(1\leq n\leq 3000\)


解题思路

先找到环,然后考虑暴力枚举点对\((x,y)\)计算贡献,即统计在\(x\)删除时与\(y\)连通的概率。

如果他们之间的路径没有经过环,那么显然这个概率是\(\frac{1}{|p|}\)即\(x\)必须是第一个删除的。

如果他们之间的路径有环,那么这样就会产生两条路径,概率计算后要容斥减去即产生贡献

\[\frac{1}{|p_1|}+\frac{1}{|p_2|}-\frac{1}{|p_1\cup p_2|}
\]

写个\(LCA\)就好了,时间复杂度\(O(n^2\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=3100,T=12;
struct node{
int to,next;
}a[N<<1];
int n,tot,cnt,ls[N],cir[N],root[N],dep[N],f[N][T+1];
bool v[N];double ans;
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
int dfs(int x,int fa){
v[x]=1;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
if(v[y]){
root[++cnt]=x;cir[x]=cnt;
return y;
}
int z=dfs(y,x);
if(z==-1)return -1;
if(z){
root[++cnt]=x;cir[x]=cnt;
if(z==x)return -1;
return z;
}
}
return 0;
}
void Dfs(int x){
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(cir[y])continue;
cir[y]=cir[x];
dep[y]=dep[x]+1;
f[y][0]=x;Dfs(y);
}
return;
}
int LCA(int x,int y){
if(dep[y]>dep[x])swap(x,y);
for(int i=T;i>=0;i--)
if(dep[f[x][i]]>=dep[y])x=f[x][i];
if(x==y)return x;
for(int i=T;i>=0;i--)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++){
int x,y;
scanf("%d%d",&x,&y);x++;y++;
addl(x,y);addl(y,x);
}
dfs(1,0);
for(int i=1;i<=cnt;i++)
dep[root[i]]=1,Dfs(root[i]);
for(int j=1;j<=T;j++)
for(int i=1;i<=n;i++)
f[i][j]=f[f[i][j-1]][j-1];
for(int x=1;x<=n;x++)
for(int y=1;y<=n;y++){
if(cir[x]==cir[y]){
int lca=LCA(x,y);
ans+=1/(1.0*(dep[x]+dep[y]-dep[lca]*2+1));
}
else{
int len3=dep[x]+dep[y];
int len1=abs(cir[x]-cir[y]);
int len2=cnt-len1;
len1+=len3-1;len2+=len3-1;len3+=cnt-2;
ans+=1.0/(double)len1+1.0/(double)len2-1.0/(double)len3;
}
}
printf("%.12lf\n",ans);
return 0;
}

CF235D-Graph Game【LCA,数学期望】的更多相关文章

  1. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  2. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  3. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  4. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  5. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  6. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  7. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  8. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  9. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

随机推荐

  1. 微信小程序自定义顶部

    wxml <view style="height:{{titleHeight}}px;background:{{background}}" class="user- ...

  2. C#:[StructLayout(LayoutKind.Sequential)]

    参考网址: https://blog.csdn.net/hongkonglife/article/details/23422857 结构体是由若干成员组成的.布局有两种1.Sequential,顺序布 ...

  3. 【java虚拟机】分代垃圾回收策略的基础概念

    作者:平凡希 原文地址:https://www.cnblogs.com/xiaoxi/p/6602166.html 一.为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一 ...

  4. git撤销已经push到远程仓库上的代码

    具体方法,git命令:git reset --hard <commit_id>git push origin HEAD --force commit_id可以通过git命令:git log ...

  5. JDBC中级篇(MYSQL)——模拟从数据库中上传下载附件

    注意:其中的JdbcUtil是我自定义的连接工具类:代码例子链接: package b_blob_clob; import java.io.BufferedOutputStream; import j ...

  6. C++:继承

    共有继承(public),私有继承(private),保护继承(protected): 1.public继承: 基类成员类型 作为派生类成员 在派生类中是否可见 对派生类对象的可见性 public p ...

  7. php实现验证码(数字、字母、汉字)

    验证码在表单实现越来越多了,但是用js的写的验证码,总觉得不方便,所以学习了下php实现的验证码.好吧,其实是没有事情干,但是又不想浪费时间,所以学习了下php实现验证码.正所谓,技多不压身.而且,也 ...

  8. 超实用的idea技巧,windows技巧,用于节省时间!

    进去https://zhangjzm.gitee.io/self_study 找平常积累,或者其它的

  9. mybaits源码分析--binding模块(五)

    一.binding模块 接下来我们看看在org.apache.ibatis.binding包下提供的Binding模块 ,binding其实在执行sqlSession.getMapper(UserMa ...

  10. 在node节点部署kubectl管理k8s集群

    感谢!原文链接:https://blog.csdn.net/sinat_35930259/article/details/79994078 kubectl是k8s的客户端程序,也是k8s的命令行工具, ...