#  Kernel density estimation
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity
# Code reference: http://scikit-learn.org/stable/auto_examples/neighbors/
# plot_kde_1d.html
N = 200
np.random.seed(1)
# Create 2 normal distributed data set
norm_data_1 = np.random.normal(0, 1, int(0.3 * N))
norm_data_2 = np.random.normal(5, 1, int(0.7 * N))
norm_data = np.concatenate((norm_data_1, norm_data_2)) X_plot = np.linspace(-5, 10, 1000) # Create x axis range
# Create linear combination of 2 normal distributed random variable
norm_linear = (0.3 * norm(0, 1).pdf(X_plot) + 0.7 * norm(5, 1).pdf(X_plot)) # figure
fig, ax = plt.subplots()
# Plot the real distribution
ax.fill(X_plot, norm_linear, fc='black', alpha=0.2,
label='Linearcombination')
# Use 3 different kernels to estimate
for kernel in ['gaussian', 'tophat', 'epanechnikov']:
# Initial an object to use kernel function to fit data,
# bandwidth will affect the result
kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(norm_data.reshape(-1, 1))
# Evaluate the density model on the data
log_dens = kde.score_samples(X_plot.reshape(-1, 1))
ax.plot(X_plot, np.exp(log_dens), '-',
label="kernel ='{0}'".format(kernel)) # Add text on the plot, position argument can be arbitrary
ax.text(6, 0.38, "N={0} points".format(N))
ax.legend(loc='upper left')
# Plot the random points, squeeze them into narrow space
ax.plot(norm_data, -0.005 - 0.01 *
np.random.random(norm_data.shape[0]), '+k') # Set x-axis y-axis limit to adjust the figure
ax.set_xlim(-4, 9)
ax.set_ylim(-0.03, 0.4)
fig.savefig('kernel_estimation.png', dpi=300)
plt.show()

二维散点图:

# Using the Box-Mueller Method to generate 2-dim normally distributed variables
import numpy as np
import matplotlib.pyplot as plt np.random.seed(100) # Set seed from comparability
# For mu = (0,0), covariance matrix Sigma = identity matrix
n = 500 # Number of random numbers
msize = 0.1 # determines the size of the plotted points # a good size might be msize=5 for n=500 pts and msize=0.1 for n>50K
a = np.random.exponential(scale=1, size=n)
phi = np.random.uniform(low=0, high=2 * np.pi, size=n)
# change to cartesian coordinates
x = a * np.cos(phi)
y = a * np.sin(phi)
plt.figure(figsize=(4, 4))
plt.plot(x, y, 'ro', markersize=msize) # for covariance matrix Sigma = A: Y = X/sqrt(Sigma) ~ N(0,I) => Y*sqrt(Sigma)
# Calculate sqrt(A) with Jordan decomposition
A = [[3, 1], [1, 1]]
A_eig = np.linalg.eig(A) E_val = A_eig[0]
Gamma = A_eig[1]
Lambda = np.diag(E_val)
np.sqrt(Lambda)
Lambda12 = np.sqrt(Lambda) A12 = np.dot(np.dot(Gamma, Lambda12), np.transpose(Gamma)) # Solve with matrix multiplication
c = [x, y]
tfxy = np.dot(A12, c) # print(N)
plt.figure(2, figsize=(6, 4))
plt.plot(tfxy[0], tfxy[1], 'ro', markersize=msize)

Gaussion的更多相关文章

  1. GA代码中的细节

    GA-BLX交叉-Gaussion变异 中的代码细节: 我写了一个GA的代码,在2005测试函数上一直不能得到与实验室其他同学类似的数量级的结果.现在参考其他同学的代码,发现至少有如下问题: 1.在交 ...

  2. Andrew Ng机器学习课程笔记--week7(SVM)

    本周主要学习SVM 一. 内容概要 Large Margin Classification Optimization Objective(优化Objective(损失函数)) Large Margin ...

  3. Andrew Ng机器学习课程笔记--week9(上)(异常检测&推荐系统)

    本周内容较多,故分为上下两篇文章. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distrib ...

  4. Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)

    本周内容较多,故分为上下两篇文章. 本文为下篇. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian ...

  5. R语言进行机器学习方法及实例(一)

    版权声明:本文为博主原创文章,转载请注明出处   机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有 ...

  6. 重写轮子之 GaussionNB

    我仿照sk-learn 中 GaussionNB 的结构, 重写了该算法的轮子,命名为 MyGaussionNB, 如下: # !/usr/bin/python # -*- coding:utf-8 ...

  7. Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探

    1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异 ...

  8. 神经网络训练tricks

    神经网络构建好,训练不出好的效果怎么办?明明说好的拟合任意函数(一般连续)(为什么?可以参考http://neuralnetworksanddeeplearning.com/),说好的足够多的数据(h ...

  9. 高斯混合模型的EM算法

    高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...

随机推荐

  1. LeetCoded第20题题解--有效的括号

    有效的括号 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空 ...

  2. freecodecamp挑战

    freecodecamp挑战 2020年3月21初次挑战 完成45关挑战 2020年3月22日 完成至101关 2020年3月23日 完成至144关 2020年3月24日 完成至187关 css结束 ...

  3. [SWMM]模型子汇水区划分的几种方法

    子汇水区的划分是SWMM模型建模的主要步骤之一,划分的好坏对结果精度有比较大的影响.概括来讲,子汇水区的划分有以下几种思路: (1)根据管网走向.建筑物和街道分布,直接人工划分子汇水区.这个方法适用于 ...

  4. Ubuntu中配置tomcat

    1.从网上下载的tomcat配置失败后,servername那一栏写不了,必须要删除工作空间的配置文件 sudo rm /home/{username}/workspace/.metadata/.pl ...

  5. ubuntu软件工具推荐

    时间:2019-04-11 记录:PangYuaner 标题:串口调试利器--Minicom配置及使用详解 地址:https://www.cnblogs.com/wonux/p/5897127.htm ...

  6. ffplay 播放网络摄像头视频

    shell脚本如下,无须加port ffplay rtsp://cameral_ip

  7. VSCode中相对路径设置问题

    使用的版本 对于import xxx操作,相对路径为sys.path 对于open("test.txt",'r')文件打开操作,相对路径为os.getcwd() 对于termina ...

  8. noip模拟35

    A. 玩游戏 考场做法用双指针向两侧更新,当左段点左移一位时,如果右端点不满足条件,则跳回肯定满足的位置.复杂度玄学 题解做法是类似最长子段和,如果有一个区间和为负,则维护的指针跳过去即可 B. 排列 ...

  9. fwm环境APP菜品数据加载失败的优化操作

    1)在项目的.env文件中添加如下一行: RESPONSE_CACHE_ENABLED=true 2)拷贝 laravel-worker.conf.example,将laravel字段替换为域名,并执 ...

  10. echo -e 命令详解

    echo在php中是输入那么在linux中是不是也是输入呢,当然echo在linux也是输入不过它的用法比php强大多了可以带参数及一些东西,下面我们来看一篇关于linux echo命令介绍及-n.- ...