Gaussion
# Kernel density estimation
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity
# Code reference: http://scikit-learn.org/stable/auto_examples/neighbors/
# plot_kde_1d.html
N = 200
np.random.seed(1)
# Create 2 normal distributed data set
norm_data_1 = np.random.normal(0, 1, int(0.3 * N))
norm_data_2 = np.random.normal(5, 1, int(0.7 * N))
norm_data = np.concatenate((norm_data_1, norm_data_2))
X_plot = np.linspace(-5, 10, 1000) # Create x axis range
# Create linear combination of 2 normal distributed random variable
norm_linear = (0.3 * norm(0, 1).pdf(X_plot) + 0.7 * norm(5, 1).pdf(X_plot))
# figure
fig, ax = plt.subplots()
# Plot the real distribution
ax.fill(X_plot, norm_linear, fc='black', alpha=0.2,
label='Linearcombination')
# Use 3 different kernels to estimate
for kernel in ['gaussian', 'tophat', 'epanechnikov']:
# Initial an object to use kernel function to fit data,
# bandwidth will affect the result
kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(norm_data.reshape(-1, 1))
# Evaluate the density model on the data
log_dens = kde.score_samples(X_plot.reshape(-1, 1))
ax.plot(X_plot, np.exp(log_dens), '-',
label="kernel ='{0}'".format(kernel))
# Add text on the plot, position argument can be arbitrary
ax.text(6, 0.38, "N={0} points".format(N))
ax.legend(loc='upper left')
# Plot the random points, squeeze them into narrow space
ax.plot(norm_data, -0.005 - 0.01 *
np.random.random(norm_data.shape[0]), '+k')
# Set x-axis y-axis limit to adjust the figure
ax.set_xlim(-4, 9)
ax.set_ylim(-0.03, 0.4)
fig.savefig('kernel_estimation.png', dpi=300)
plt.show()
二维散点图:
# Using the Box-Mueller Method to generate 2-dim normally distributed variables
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(100) # Set seed from comparability
# For mu = (0,0), covariance matrix Sigma = identity matrix
n = 500 # Number of random numbers
msize = 0.1 # determines the size of the plotted points
# a good size might be msize=5 for n=500 pts and msize=0.1 for n>50K
a = np.random.exponential(scale=1, size=n)
phi = np.random.uniform(low=0, high=2 * np.pi, size=n)
# change to cartesian coordinates
x = a * np.cos(phi)
y = a * np.sin(phi)
plt.figure(figsize=(4, 4))
plt.plot(x, y, 'ro', markersize=msize)
# for covariance matrix Sigma = A: Y = X/sqrt(Sigma) ~ N(0,I) => Y*sqrt(Sigma)
# Calculate sqrt(A) with Jordan decomposition
A = [[3, 1], [1, 1]]
A_eig = np.linalg.eig(A)
E_val = A_eig[0]
Gamma = A_eig[1]
Lambda = np.diag(E_val)
np.sqrt(Lambda)
Lambda12 = np.sqrt(Lambda)
A12 = np.dot(np.dot(Gamma, Lambda12), np.transpose(Gamma))
# Solve with matrix multiplication
c = [x, y]
tfxy = np.dot(A12, c)
# print(N)
plt.figure(2, figsize=(6, 4))
plt.plot(tfxy[0], tfxy[1], 'ro', markersize=msize)
Gaussion的更多相关文章
- GA代码中的细节
GA-BLX交叉-Gaussion变异 中的代码细节: 我写了一个GA的代码,在2005测试函数上一直不能得到与实验室其他同学类似的数量级的结果.现在参考其他同学的代码,发现至少有如下问题: 1.在交 ...
- Andrew Ng机器学习课程笔记--week7(SVM)
本周主要学习SVM 一. 内容概要 Large Margin Classification Optimization Objective(优化Objective(损失函数)) Large Margin ...
- Andrew Ng机器学习课程笔记--week9(上)(异常检测&推荐系统)
本周内容较多,故分为上下两篇文章. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distrib ...
- Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)
本周内容较多,故分为上下两篇文章. 本文为下篇. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian ...
- R语言进行机器学习方法及实例(一)
版权声明:本文为博主原创文章,转载请注明出处 机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有 ...
- 重写轮子之 GaussionNB
我仿照sk-learn 中 GaussionNB 的结构, 重写了该算法的轮子,命名为 MyGaussionNB, 如下: # !/usr/bin/python # -*- coding:utf-8 ...
- Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异 ...
- 神经网络训练tricks
神经网络构建好,训练不出好的效果怎么办?明明说好的拟合任意函数(一般连续)(为什么?可以参考http://neuralnetworksanddeeplearning.com/),说好的足够多的数据(h ...
- 高斯混合模型的EM算法
高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...
随机推荐
- .Net 生成带注释的Nuget包
使用.NET Core时,我们的类库都要打包成nuget包上传到nuget服务器,以供自己或他人使用 .Net sdk提供了一个 .Net pack 命令可以生成nuget包.比如下面的命令 dotn ...
- Longhorn 云原生容器分布式存储 - Air Gap 安装
内容来源于官方 Longhorn 1.1.2 英文技术手册. 系列 Longhorn 是什么? Longhorn 云原生容器分布式存储 - 设计架构和概念 Longhorn 云原生容器分布式存储 - ...
- centos7 Tomcat 多项目配置
2021-07-30 1. Tomcat 各目录功能说明 bin :脚本文件目录,存放启动和关闭 Tomcat 的脚本文件conf:存放 Tomcat 的配置文件,server.xml 尤其重要log ...
- Android常见面试题(一)
ANDROID(一) Activity 1.什么是Activity? 请描述一下生命周期 Activity: 一个Activity是一个应用程序组件,提供一个屏幕,用户可以用来交互为了完成某项任务,例 ...
- 15-SpringCloud Stream
Stream是什么及Binder介绍 官方文档1 官方文档2 Cloud Stream中文指导手册 什么是Spring Cloud Stream? 官方定义Spring Cloud Stream是一个 ...
- C# 实现图片上传
C# 实现图片上传 C#实现图片上传: 通过页面form表单提交数据到动作方法,动作方法实现保存图片到指定路径,并修改其文件名为时间格式 页面设置 这里使用的模板MVC自带的模板视图 <h2&g ...
- C# 给PPT中的图表添加趋势线
本文内容分享通过C#程序代码给PPT文档中的图表添加数据趋势线的方法. 支持趋势线的图表类型包括二维面积图.条形图.柱形图.柱形图.股价图.xy (散点图) 和气泡图中:不能向三维.堆积.雷达图.饼图 ...
- jvm学习笔记:虚拟机栈
虚拟机栈 Each Java Virtual Machine thread has a private Java Virtual Machine stack, created at the same ...
- 《Go语言圣经》阅读笔记:第二章程序结构
第二章 程序结构 2.1 命名 在GO语言中,所有的变量名.函数.常量.类型.语句标号.包名都遵循一个原则: 名字必须以字母或者下划线开头,后面紧跟任意数量的字母数字下划线.区分大小写. 在GO语言中 ...
- Identity用户管理入门三(注册用户)
用户注册主要有2个方法,1.密码加密 2.用户注册 3.ASP.NET Core Identity 使用密码策略.锁定和 cookie 配置等设置的默认值. 可以在类中重写这些设置 Startup(官 ...