You are standing at position 0 on an infinite number line. There is a goal at position target.

On each move, you can either go left or right. During the n-th move (starting from 1), you take n steps.

Return the minimum number of steps required to reach the destination.

Example 1:

Input: target = 3
Output: 2
Explanation:
On the first move we step from 0 to 1.
On the second step we step from 1 to 3.

Example 2:

Input: target = 2
Output: 3
Explanation:
On the first move we step from 0 to 1.
On the second move we step from 1 to -1.
On the third move we step from -1 to 2.

Note:

  • target will be a non-zero integer in the range [-10^9, 10^9].

Approach #1: Math. [Java]

class Solution {
public int reachNumber(int target) {
int sum = 0;
int steps = 1;
int count = 0; target = Math.abs(target); while (sum < target || (sum - target) % 2 != 0) {
sum += steps;
steps++;
count++;
} return count++;
}
}

  

Analysis:

Step 0: Get positive target value (step to get negative target is the same as to get positive value due to symmetry).

Step 1: Find the smallest step that the summation from 1 to step just exceeds or equalstarget.

Step 2: find the difference between sum and target. The goal is to get rid of the difference to reach target. For i-th move, if we switch the right move to the left, the change in summation will be 2*i less. Now the difference between sum and target has to be an even number in order for the math to check out.

Step 2.1: If the difference value is even, we can return the current step.

Step 2.2: If the difference value is odd, we need to increase the step untill the difference is even (at most 2 more steps needed).

Eg:

target = 5

Step 0: target = 5.

Step 1: sum = 1 + 2 + 3 = 6 > 5, step = 3.

Step 2: Difference = 6 - 5 = 1. Since the difference is an odd value, we will not reach the target by swirching any right move to the left. So we increase our step.

Step 2.2: We need to increase step by 2 to get an even difference (i.e. i + 2 + 3 + 4 + 5 = 15, now step = 5, difference = 15 - 5 = 10). Now that we have an even difference, we can simply switch any move to the left (i.e. change + to -) as long as the summation of the changed value equals to half of the difference. We can switch 1 and 4 or 2 and 3 or 5.

Reference:

https://leetcode.com/problems/reach-a-number/discuss/112968/Short-JAVA-Solution-with-Explanation

754. Reach a Number的更多相关文章

  1. 【Leetcode_easy】754. Reach a Number

    problem 754. Reach a Number solution1: class Solution { public: int reachNumber(int target) { target ...

  2. LeetCode 754. Reach a Number

    754. Reach a Number(到达终点数字) 链接:https://leetcode-cn.com/problems/reach-a-number/ 题目: 在一根无限长的数轴上,你站在0的 ...

  3. 【LeetCode】754. Reach a Number 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学 日期 题目地址:https://leetcod ...

  4. LeetCode 754. Reach a Number到达终点数字

    题目 在一根无限长的数轴上,你站在0的位置.终点在target的位置. 每次你可以选择向左或向右移动.第 n 次移动(从 1 开始),可以走 n 步. 返回到达终点需要的最小移动次数. 示例 1: 输 ...

  5. 领扣-754 到达终点数字 Reach a Number MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  6. [LeetCode] Reach a Number 达到一个数字

    You are standing at position 0 on an infinite number line. There is a goal at position target. On ea ...

  7. [Swift]LeetCode754. 到达终点数字 | Reach a Number

    You are standing at position 0 on an infinite number line. There is a goal at position target. On ea ...

  8. 【leetcode】Reach a Number

    题目: You are standing at position 0 on an infinite number line. There is a goal at position target. O ...

  9. Python3解leetcode Reach a Number

    问题描述: You are standing at position 0 on an infinite number line. There is a goal at position target. ...

随机推荐

  1. mysql索引的性能分析

    [前言]上一篇博客介绍了InnoDB引擎的索引机制,主要围绕B+树的建立,目录项记录里主键和页号,到页目录下的二分法定位数据:二级索引里的主键和索引列,及其回表操作.这一篇分析一下索引的性能,围绕如何 ...

  2. 04----python入门----文件处理

    一.大致介绍 我们在计算机上进行的操作,归根结底是对文件的操作,其实质是由操作系统发送请求,将用户或者应用程序对文件读写操作转换成具体的硬盘指令. 众所周知,内存中的数据是无法永久保存的.在计算机硬件 ...

  3. SpringBoot启动流程分析原理(一)

    我们都知道SpringBoot自问世以来,一直有一个响亮的口号"约定优于配置",其实一种按约定编程的软件设计范式,目的在于减少软件开发人员在工作中的各种繁琐的配置,我们都知道传统的 ...

  4. 多租缓存实现方案 (Java)

    多租缓存实现方案 (Java) 缓存在系统中是不可少的,缓存的实现是一个从无到有的过程,最开始,单应用的,缓存都是应用内部的,Map基本就能满足,实现简单.但是当上了微服务之后,应用是多部署的,应用之 ...

  5. python文件操作以及循环小结

    Python中的文件使用建议使用 with open(filename, "r") as f: 的形式进行文件操作,如果忘记关闭文件指针的话,他会帮你自己关闭文件, 如果使用原来的 ...

  6. Mysql将查询结果某个字段以逗号分隔,使用group_concat函数可以实现(配合group by使用)

    示例:SELECT Id, GROUP_CONCAT(Name SEPARATOR ',') Names FROM some_table GROUP BY id

  7. 攻防世界 reverse Newbie_calculations

    Newbie_calculations Hack-you-2014 题目名百度翻译成新手计算,那我猜应该是个实现计算器的题目.... IDA打开程序,发现一长串的函数反复调用,而且程序没有输入,只有输 ...

  8. go-ini入门教程

    go-ini入门教程 go-ini简介 Package ini provides INI file read and write functionality in Go. 在实际开发时,配置信息一般不 ...

  9. JAVA面试-计算机网络-TCP三次握手

    学习原因 这个是面试的一个常问热点,所以务必要掌握. 通俗示例 小红是人事部门的员工,现在正在招收IT人员,小明看到招聘信息和待遇,感觉很适合自己,所以准备和小红发消息了解具体情况.而简历在本故事中代 ...

  10. 走进docker-swarm 带大家快速掌握docker自带编排工具

    什么是Docker Swarm? 对比Docker 前面我们介绍过Docker可以理解成是一个我们的服务的独立运行的容器,那么在实际工作中,我们的系统可能是一个微服务应用,系统中根据业务拆分成多个模块 ...