Codeforces 题面传送门 & 洛谷题面传送门

首先显然一个 gray 串的长度只可能是 \(2^k-1\),其中 \(k\in\mathbb{Z}\)。

考虑将一个字符改成另外一个字符会对答案产生什么样的影响。显然原来包含这个字符的 gray 串的贡献都应被减掉,新出现的 gray 串的贡献又应被加上。我们分别计算两部分的贡献。

对于第一部分,由于 gray 串最多只可能有 \(n\log n\),因此我们逐一枚举它们并差分一下它们贡献。那么如何检验一个长度为 \(2^k-1\) 的字符串是否符合要求呢?考虑倍增。设 \(is_{i,j}\) 表示以 \(s_j\) 开头的长度为 \(2^i-1\) 的字符串是否符合要求,那么 \(is_{i,j}\) 为 \(1\) 当且仅当 \(is_{i-1,j},is_{i-1,j+2^{i-1}}\) 均为 \(1\),并且 \(s[j...j+2^{i-1}-2]=s[j+2^{i-1}...j+2^i-2]\),且 \(s_{j+2^{i-1}-1}\) 在 \(s[j...j+2^i-2]\) 中只出现过一次。这个很好判断。

对于第二部分,我们考虑一个长度为 \(2^{k}-1\) 字符串在修改哪些字符的情况下会变成 gray 串。分三种情况:改左边、改中间、改右边。第一种和第三种本质上是相同的,因此这里只考虑第一种和第二种。如果修改中间字符,那么要求左右两边的子串相同并且都是 gray 串,并且修改过的字符在子串中只出现一次。如果修改左边字符串中的字符,那么修改方式显然是唯一的——就是左右两部分唯一不同的字符串,可以通过二分+hash 求出 LCP 和 LCS 后知道要修改哪个字符,然后再检验下改过之后的字符串是否符合要求即可。

总之是一道不算太难的哈希练手题。

const int MAXN=1e5;
const int LOG_N=17;
int n;char s[MAXN+5];
ll d[MAXN+5],add[MAXN+5][28];
struct hsh{
int BS,MOD;
int hs[MAXN+5],pw[MAXN+5];
void init(){
for(int i=(pw[0]=1);i<=n;i++) pw[i]=1ll*pw[i-1]*BS%MOD;
for(int i=1;i<=n;i++) hs[i]=(1ll*hs[i-1]*BS+s[i])%MOD;
}
int gethash(int l,int r){return (hs[r]-1ll*pw[r-l+1]*hs[l-1]%MOD+MOD)%MOD;}
} h1,h2;
bool check(int l1,int r1,int l2,int r2){
return h1.gethash(l1,r1)==h1.gethash(l2,r2)&&
h2.gethash(l1,r1)==h2.gethash(l2,r2);
}
int occ[MAXN+5][28];
bool is[LOG_N+2][MAXN+5];
int getocc(int c,int l,int r){return occ[r][c]-occ[l-1][c];}
int getlcp(int x,int y){
int l=1,r=n-max(x,y)+1,p=0;
while(l<=r){
int mid=l+r>>1;
if(check(x,x+mid-1,y,y+mid-1)) p=mid,l=mid+1;
else r=mid-1;
} return p;
}
int getlcs(int x,int y){
int l=1,r=min(x,y),p=0;
while(l<=r){
int mid=l+r>>1;
if(check(x-mid+1,x,y-mid+1,y)) p=mid,l=mid+1;
else r=mid-1;
} return p;
}
int main(){
scanf("%s",s+1);n=strlen(s+1);
h1.BS=191;h1.MOD=998244853;h2.BS=193;h2.MOD=1004535809;
h1.init();h2.init();
for(int i=1;i<=n;i++){
for(int j=0;j<26;j++) occ[i][j]=occ[i-1][j];
occ[i][s[i]-'a']++;
}
for(int i=1;i<=n;i++) is[1][i]=1;ll sum=n;
for(int i=2;i<=LOG_N;i++) for(int j=1;j+(1<<i)-2<=n;j++){
is[i][j]=is[i-1][j]&is[i-1][j+(1<<i-1)];
if(is[i][j]){
is[i][j]&=check(j,j+(1<<i-1)-2,j+(1<<i-1),j+(1<<i)-2);
is[i][j]&=(getocc(s[j+(1<<i-1)-1]-'a',j,j+(1<<i)-2)==1);
if(is[i][j]){
int len=(1<<i)-1;sum+=1ll*len*len;
d[j]+=1ll*len*len;d[j+(1<<i)-1]-=1ll*len*len;
}
}
// printf("%d %d %d\n",i,j,is[i][j]);
}
for(int i=1;i<=n;i++) d[i]+=d[i-1];
ll dlt=0;
for(int i=2;i<=LOG_N;i++) for(int j=1;j+(1<<i)-2<=n;j++){
if(!is[i-1][j]&&!is[i-1][j+(1<<i-1)]) continue;
int len=(1<<i)-1;ll bnf=1ll*len*len;
if(is[i-1][j]&&is[i-1][j+(1<<i-1)]){
if(check(j,j+(1<<i-1)-2,j+(1<<i-1),j+(1<<i)-2)){
for(int c=0;c<26;c++) if(!getocc(c,j,j+(1<<i)-2)){
add[j+(1<<i-1)-1][c]+=bnf;
}
}
} if(is[i-1][j+(1<<i-1)]){
int lcp=getlcp(j,j+(1<<i-1)),lcs=getlcs(j+(1<<i-1)-2,j+(1<<i)-2);
if(lcp+lcs==(1<<i-1)-2){
int ori=s[j+lcp]-'a',nd=s[j+(1<<i-1)+lcp]-'a';
if(getocc(s[j+(1<<i-1)-1]-'a',j,j+(1<<i)-2)-(ori==s[j+(1<<i-1)-1]-'a')+(nd==s[j+(1<<i-1)-1]-'a')!=1);
else add[j+lcp][nd]+=bnf;
}
} if(is[i-1][j]){
int lcp=getlcp(j,j+(1<<i-1)),lcs=getlcs(j+(1<<i-1)-2,j+(1<<i)-2);
if(lcp+lcs==(1<<i-1)-2){
int ori=s[j+(1<<i-1)+lcp]-'a',nd=s[j+lcp]-'a';
if(getocc(s[j+(1<<i-1)-1]-'a',j,j+(1<<i)-2)-(ori==s[j+(1<<i-1)-1]-'a')+(nd==s[j+(1<<i-1)-1]-'a')!=1);
else add[j+(1<<i-1)+lcp][nd]+=bnf;
}
}
}
// printf("%lld\n",sum);
// for(int i=1;i<=n;i++) printf("%lld%c",d[i]," \n"[i==n]);
for(int i=1;i<=n;i++) for(int j=0;j<26;j++)
if(s[i]-'a'!=j) chkmax(dlt,-d[i]+add[i][j]);
printf("%lld\n",sum+dlt);
return 0;
}

Codeforces 356E - Xenia and String Problem(哈希)的更多相关文章

  1. CF356E - Xenia and String Problem

    也许更好的阅读体验 \(\mathcal{Description}\) 定义一种字符串\(gray\)串满足: 长度为奇数 正中间的字母只出现一次 左右两端相同,左右两端也是gray串 一个\(gra ...

  2. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  3. Mediocre String Problem (2018南京M,回文+LCP 3×3=9种做法 %%%千年好题 感谢"Grunt"大佬的细心讲解)

    layout: post title: Mediocre String Problem (2018南京M,回文+LCP 3×3=9种做法 %%%千年好题 感谢"Grunt"大佬的细 ...

  4. hdu String Problem(最小表示法入门题)

    hdu 3374 String Problem 最小表示法 view code#include <iostream> #include <cstdio> #include &l ...

  5. HDU 3374 String Problem(KMP+最大/最小表示)

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. 【HDU3374】 String Problem (最小最大表示法+KMP)

    String Problem Description Give you a string with length N, you can generate N strings by left shift ...

  7. HDOJ3374 String Problem 【KMP】+【最小表示法】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  8. HDU 3374 String Problem (KMP+最大最小表示)

    HDU 3374 String Problem (KMP+最大最小表示) String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  9. String Problem hdu 3374 最小表示法加KMP的next数组

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. javascript-原生-面向对象

    1.javascript面向对象程序设计 概述:javascript不想其他面向对象编程语言那样有类的概念,javascript没有类(构造函数)的概念,只有对象的概念. 2.理解javascript ...

  2. 【UE4 C++ 基础知识】<5> 容器——TArray

    概述 TArray 是UE4中最常用的容器类.其速度快.内存消耗小.安全性高. 其设计时未考虑扩展问题,因此建议在实际操作中勿使用 新建(new) 和 删除(delete) 创建或销毁 TArray ...

  3. 【UE4 C++】 UnrealPak 与 Pak 的制作、挂载、加载

    简介 通过 UnrealPak,可以将资源打包成 Pak 文件 Pak文件是UE4游戏生成的数据包文件. Pak 之前一般先有 Cooked 步骤,将资源烘焙为对应平台支持的资源 一般打包后的项目使用 ...

  4. VS2015+OpenCV+Qt

    VS2015+OpenCV+Qt 01.OpenCV 下载 进入官网链接: https://opencv.org,下载所需要的版本: 下载完成后直接双击,选择解压路径,解压到响应的文件夹中: 若之后需 ...

  5. 替换excel模板中的内容并使用JavaMail发送邮件

    由于在公司工作,常年出差,每天都要以日报的形式向公司汇报当天的工作内容.而日报的内容大体上就只有当天工作的主要内容时变化的,其余的都是不变 的. 而我的电脑刚打开excel有点卡,因此决定使用Java ...

  6. kafka-eagle监控界面搭建

    kafka-eagle监控界面搭建 一.背景 二 .mac上安装kafka-eagle 1.安装JDK 2.安装eagle 1.下载eagle 2.解压并配置环境变量 3.启用kafka的JMX 4. ...

  7. (六)、Docker 之 Dockerfile

    1.什么是Dockerfile Dockerfile是用来构建Docker镜像的构建文件,是由一系列命令和参数构成的脚本. 2.Dockerfile解析过程 前提认知: 每条保留字指令都必须为大写字母 ...

  8. Netty:Netty的介绍以及它的核心组件(一)—— Channel

    1. Netty 介绍 Netty 是一个无阻塞的输入/输出(NIO)框架,它使开发低级网络服务器和客户端变得相对简单.Netty为需要在套接字级别上工作的开发人员提供了令人难以置信的强大功能,例如, ...

  9. 使用Egg改造订单系统展示效果,方便快速浏览

    素材准备: 1.Egg.js Born to build better enterprise frameworks and apps with Node.js & Koa 为企业级框架和应用而 ...

  10. 两个栈实现队列 牛客网 剑指Offer

    两个栈实现队列 牛客网 剑指Offer 题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. class Solution: def __init__(sel ...