Codeforces 436D - Pudding Monsters(dp)
u1s1 这题数据范围有点迷惑啊……乍一看 \(\mathcal O(nm)\) 过不去,还以为是正解是 \(\mathcal O(n+m^2)\) 呢。
考虑 \(dp\),设 \(f_i\) 表示用前 \(i\) 个布丁,并且第 \(i\) 个布丁要么不动,要么向左移动能够覆盖的最多特殊格子数,再设 \(g_i\) 表示前 \(i\) 个布丁,并且第 \(i\) 个布丁的位置不发生变化所能覆盖的最多特殊格子数。
想好了 \(dp\) 状态,转移就水到渠成了:
- 对于 \(f_i\),要么第 \(i\) 个布丁不动,即 \(g_i\rightarrow f_i\),要么第 \(i\) 个布丁向左移动,那么我们就枚举上一个不动的布丁 \(j\),\(g_j+sum(a_j+1,a_j+i-j)\rightarrow f_i\),其中 \(sum(l,r)\) 表示 \([l,r]\) 中特殊格子的个数。
- 对于 \(g_i\),枚举上一个不动或向左移动的布丁 \(j\),那么显然布丁 \(j+1,j+2,\dots,i-1\) 都会向右移动直到靠到 \(i\) 上,即 \(f_j+sum(a_i-i+j+1,a_i)\rightarrow g_i\)。
当然也可以改写成以下形式:
- \(f_j+sum(a_i-i+j+1,a_i)\rightarrow g_i\)
- \(g_i+sum(a_i+1,a_i+j)\rightarrow f_{i+j}\)
- \(g_i\rightarrow f_i\)
这样暴力 \(dp\) 是平方的,显然会炸,不过注意到特殊格子数量很少,考虑以此为突破口优化 \(dp\) 转移。比方说拿转移方程 \(f_j+sum(a_i-i+j+1,a_i)\rightarrow g_i\) 举例,注意到 \(f_i\leq f_{i+1}\),而如果 \(a_i-i+j+1\) 不是特殊格子,那么显然 \(sum(a_i-i+j+1,a_i)=sum(a_i-i+j+2,a_i)\),故 \(f_j+sum(a_i-i+j+1,a_i)=f_j+sum(a_i-i+j+2,a_i)\le f_{j+1}+sum(a_i-i+j+2,a_i)\),也就是说我们必定会从 \(a_i-i+j+1\) 为特殊格子的 \(j\) 转移来,故考虑转而枚举特殊格子,这样转移的复杂度就可降到 \(\mathcal O(m)\) 了。
最后,上述转移方程忽略的“连续的布丁会粘在一起”这个条件,其实这也异常容易解决,考虑求出 \(L_i\) 表示布丁 \(i\) 所在的布丁块的左端点,\(R_i\) 表示布丁 \(i\) 所在的布丁块的右端点——这显然可以线性求出。然后直接从对应转移位置的左右端点转移而来即可。可能讲得不是特别清楚,具体见代码罢。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
const int MAXM=2e3;
const int MAXPOS=2e5;
int n,m,a[MAXN+5],b[MAXM+5],sum[MAXPOS+5];
int l[MAXN+5],r[MAXN+5],f[MAXN+5],g[MAXN+5];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);sort(a+1,a+n+1);
for(int i=1;i<=m;i++) scanf("%d",&b[i]),sum[b[i]]++;sort(b+1,b+m+1);
for(int i=1;i<=MAXPOS;i++) sum[i]+=sum[i-1];
a[0]=-MAXPOS;a[n+1]=MAXPOS+MAXPOS;
for(int i=1;i<=n;i++) l[i]=(a[i-1]+1==a[i])?l[i-1]:i;
for(int i=n;i;i--) r[i]=(a[i+1]-1==a[i])?r[i+1]:i;
for(int i=1;i<=n;i++){
f[i]=max(f[i],f[i-1]+sum[a[i]]-sum[a[i]-1]);
g[i]=max(g[i],f[i-1]+sum[a[i]]-sum[a[i]-1]);
for(int j=1;j<=m&&b[j]<a[i];j++) if(a[i]-b[j]<i){
chkmax(g[i],f[l[i-a[i]+b[j]]-1]+sum[a[i]]-sum[b[j]-1]);
}
chkmax(f[i],g[i]);
for(int j=m;j&&b[j]>=a[i];j--) if(b[j]-a[i]<=n-i){
chkmax(f[r[i+b[j]-a[i]]],g[i]+sum[b[j]]-sum[a[i]]);
}
} printf("%d\n",f[n]);
return 0;
}
Codeforces 436D - Pudding Monsters(dp)的更多相关文章
- CodeForces526F:Pudding Monsters (分治)
In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...
- Codeforces Gym101341K:Competitions(DP)
http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...
- codeforces 711C Coloring Trees(DP)
题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 1051 D.Bicolorings(DP)
Codeforces 1051 D.Bicolorings 题意:一个2×n的方格纸,用黑白给格子涂色,要求分出k个连通块,求方案数. 思路:用0,1表示黑白,则第i列可以涂00,01,10,11,( ...
- Codeforces 1207C Gas Pipeline (dp)
题目链接:http://codeforces.com/problemset/problem/1207/C 题目大意是给一条道路修管道,相隔一个单位的管道有两个柱子支撑,管道柱子高度可以是1可以是2,道 ...
- Codeforces 704C - Black Widow(dp)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这种题被评到 *2900 是因为细节太繁琐了,而不是题目本身的难度,所以我切掉这种题根本不能说明什么-- 首先题目中有一个非 ...
- Codeforces 682B New Skateboard(DP)
题目大概说给一个数字组成的字符串问有几个子串其代表的数字(可以有前导0)能被4整除. dp[i][m]表示字符串0...i中mod 4为m的后缀的个数 通过在i-1添加str[i]字符转移,或者以st ...
- Codeforces 543D Road Improvement(DP)
题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...
随机推荐
- 异构智联Wi-Fi+蓝牙模组,连接快、准、稳!
下班回家打开门,电灯.电视.空调.音响.电动窗帘.扫地机器人--一呼百应,有序开工,原本冰冷的房子立刻变成了温暖港湾.可以说,舒适便捷的智能设备已经完全融入了我们的生活中. 从单一场景.单一设备,到现 ...
- 23.合并k个有序链表
合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂度. 示例: 输入: [ 1->4->5, 1->3->4, 2->6 ] 输出: 1-&g ...
- 51.N皇后问题
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋 ...
- 为什么阿里巴巴开发手册中强制要求 POJO 类使用包装类型?NPE问题防范
封面:学校内的秋天 背景:写这个的原因,也是我这两天凑巧看到的,虽然我一直有 alibaba Java 开发手册,也看过不少次,但是一直没有注意过这个问题 属于那种看过,但又没完全看过 一起来看看吧冲 ...
- LP-DDR 和其他 DDR
一篇技術文檔比較 LP-DDR 和其他 DDR. 就觀念來說,LP-DDR 就是 Low Power 的 DDR:但就架構來說,LP-DDR 和其他 DDR 是截然不同的東西. 他們分屬不同的 JDE ...
- CODING —— 云原生时代的研发工具领跑者
本文为 CODING 创始人兼 CEO 张海龙在腾讯云 CIF 工程效能峰会上所做的分享. 文末可前往峰会官网,观看回放并下载 PPT. 大家上午好,很高兴能有机会与大家分享 CODING 最近的一些 ...
- TensorFlow从入门到入坑(1)
初识TensorFlow 一.术语潜知 深度学习:深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学 ...
- 看动画学算法之:双向队列dequeue
目录 简介 双向队列的实现 双向队列的数组实现 双向队列的动态数组实现 双向队列的链表实现 双向链表的时间复杂度 简介 dequeue指的是双向队列,可以分别从队列的头部插入和获取数据,也可以从队列的 ...
- Serverless 工程实践|自建 Apache OpenWhisk 平台
作者 | 刘宇(江昱) 前言:OpenWhisk 是一个开源.无服务器的云平台,可以在运行时容器中通过执行扩展的代码响应各种事件,而无须用户关心相关的基础设施架构. OpenWhisk 简介 Open ...
- ACL实验
ACL实验 基本配置:略 首先根据题目策略的需求1,从这个角度看,我们需要做一条高级ACL,因为我们不仅要看你是谁,还要看你去干什么事情,用高级ACL来做的话,对于我们华为设备,只写拒绝,因为华为默认 ...