1 什么是Series结构?

  Series 结构,也称 Series 序列,是 Pandas 常用的数据结构之一,它是一种类似于一维数组的结构,由一组数据值(value)和一组标签组成,其中标签与数据值之间是一一对应的关系。

  Series 可以保存任何数据类型,比如整数、字符串、浮点数、Python 对象等,它的标签默认为整数,从 0 开始依次递增。Series 的结构图,如下所示:

    

  通过标签我们可以更加直观地查看数据所在的索引位置。

2 Series 对象

2.1 创建Series对象

  Pandas 使用 Series()  函数来创建 Series 对象,通过这个对象可以调用相应的方法和属性,从而达到处理数据的目的:

import pandas as pd
s=pd.Series( data, index, dtype, copy)

  参数说明如下所示:

    

  我们也可以使用数组、字典、标量值或者 Python 对象来创建 Series 对象。下面展示了创建 Series 对象的不同方法:

2.1.1 创建一个空Series对象

  使用以下方法可以创建一个空的 Series 对象,如下所示:

import pandas as pd
#输出数据为空
s = pd.Series()
print(s)

  输出结果如下:

Series([], dtype: float64)

2.1.2 ndarray创建Series对象

  ndarray 是 NumPy 中的数组类型,当 data 是 ndarry 时,传递的索引必须具有与数组相同的长度。假如没有给 index 参数传参,在默认情况下,索引值将使用是 range(n) 生成,其中 n 代表数组长度,如下所示:

[0,1,2,3…. range(len(array))-1]

  使用默认索引,创建 Series 序列对象:

import pandas as pd
import numpy as np
data = np.array(['a','b','c','d'])
s = pd.Series(data)
print (s)

  输出结果如下:

0   a
1 b
2 c
3 d
dtype: object

  上述示例中没有传递任何索引,所以索引默认从 0 开始分配 ,其索引范围为 0 到 len(data)-1,即 0 到 3。这种设置方式被称为“隐式索引”。

  除了上述方法外,你也可以使用“显式索引”的方法定义索引标签,示例如下:

import pandas as pd
import numpy as np
data = np.array(['a','b','c','d'])
#自定义索引标签(即显示索引)
s = pd.Series(data,index=[100,101,102,103])
print(s)

  输出结果:

100  a
101 b
102 c
103 d
dtype: object

2.1.3 dict创建Series对象

  您可以把 dict 作为输入数据。如果没有传入索引时会按照字典的键来构造索引;反之,当传递了索引时需要将索引标签与字典中的值一一对应。
  下面两组示例分别对上述两种情况做了演示。
  示例1,没有传递索引时:

import pandas as pd
import numpy as np
data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data)
print(s)

  输出结果:

a 0.0
b 1.0
c 2.0
dtype: float64

  示例 2,为index参数传递索引时:

import pandas as pd
import numpy as np
data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data,index=['b','c','d','a'])
print(s)

  输出结果:

b 1.0
c 2.0
d NaN
a 0.0
dtype: float64

  当传递的索引值无法找到与其对应的值时,使用 NaN(非数字)填充。

2.1.4 标量创建Series对象

  如果 data 是标量值,则必须提供索引,示例如下:

import pandas as pd
import numpy as np
s = pd.Series(5, index=[0, 1, 2, 3])
print(s)

  输出如下:

0  5
1 5
2 5
3 5
dtype: int64

  标量值按照 index 的数量进行重复,并与其一一对应。

3 访问Series数据

  上述讲解了创建 Series 对象的多种方式,那么我们应该如何访问 Series 序列中元素呢?分为两种方式,一种是位置索引访问;另一种是索引标签访问。

3.1 位置索引访问

  这种访问方式与 ndarray 和 list 相同,使用元素自身的下标进行访问。我们知道数组的索引计数从 0 开始,这表示第一个元素存储在第 0 个索引位置上,以此类推,就可以获得 Series 序列中的每个元素。下面看一组简单的示例:

import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[0]) #位置下标
print(s['a']) #标签下标

  输出结果:

1
1

  通过切片的方式访问 Series 序列中的数据,示例如下:

import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[:3])

  输出结果:

a  1
b 2
c 3
dtype: int64

  如果想要获取最后三个元素,也可以使用下面的方式:

import pandas as pd
s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])
print(s[-3:])

  输出结果:

c  3
d 4
e 5
dtype: int64

3.2 索引标签访问

  Series 类似于固定大小的 dict,把 index 中的索引标签当做 key,而把 Series 序列中的元素值当做 value,然后通过 index 索引标签来访问或者修改元素值。
  示例1,使用索标签访问单个元素值:
import pandas as pd
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])
print(s['a'])

  输出结果:

6

  示例 2,使用索引标签访问多个元素值

import pandas as pd
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])
print(s[['a','c','d']])

  输出结果:

a    6
c 8
d 9
dtype: int64

  示例3,如果使用了 index 中不包含的标签,则会触发异常:

import pandas as pd
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])
#不包含f值
print(s['f'])

  输出结果:

......
KeyError: 'f'

4  Series常用属性

  下面我们介绍 Series 的常用属性和方法。在下表列出了 Series 对象的常用属性。

    

  现在创建一个 Series 对象,并演示如何使用上述表格中的属性。如下所示:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print(s)

  输出结果:

0    0.898097
1 0.730210
2 2.307401
3 -1.723065
4 0.346728
dtype: float64

  上述示例的行索引标签是 [0,1,2,3,4]。

4.1 axes

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print ("The axes are:")
print(s.axes)

  输出结果

The axes are:
[RangeIndex(start=0, stop=5, step=1)]

4.2 dtype

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print ("The dtype is:")
print(s.dtype)

  输出结果:

The dtype is:
float64

4.3 empty

  返回一个布尔值,用于判断数据对象是否为空。示例如下:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print("是否为空对象?")
print (s.empty)

  输出结果:

是否为空对象?
False

4.4 ndim

  查看序列的维数。根据定义,Series 是一维数据结构,因此它始终返回 1。

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print (s)
print (s.ndim)

  输出结果:

0    0.311485
1 1.748860
2 -0.022721
3 -0.129223
4 -0.489824
dtype: float64
1

4.5 size

  返回 Series 对象的大小(长度)。

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(3))
print (s)
#series的长度大小
print(s.size)

  输出结果:

0   -1.866261
1 -0.636726
2 0.586037
dtype: float64
3

4.6 values

  以数组的形式返回 Series 对象中的数据。

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(6))
print(s)
print("输出series中数据")
print(s.values)

  输出结果:

0   -0.502100
1 0.696194
2 -0.982063
3 0.416430
4 -1.384514
5 0.444303
dtype: float64
输出series中数据
[-0.50210028 0.69619407 -0.98206327 0.41642976 -1.38451433 0.44430257]

4.7 index

  该属性用来查看 Series 中索引的取值范围。示例如下:

#显示索引
import pandas as pd
s=pd.Series([1,2,5,8],index=['a','b','c','d'])
print(s.index)
#隐式索引
s1=pd.Series([1,2,5,8])
print(s1.index)

  输出结果:

隐式索引:
Index(['a', 'b', 'c', 'd'], dtype='object')
显示索引:
RangeIndex(start=0, stop=4, step=1)

5 Series常用方法

5.1 head()&tail()查看数据

  如果想要查看 Series 的某一部分数据,可以使用 head() 或者 tail() 方法。其中 head() 返回前 n 行数据,默认显示前 5 行数据。示例如下:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print ("The original series is:")
print (s)
#返回前三行数据
print (s.head(3))

  输出结果:

原系列输出结果:
0 1.249679
1 0.636487
2 -0.987621
3 0.999613
4 1.607751
head(3)输出:
dtype: float64
0 1.249679
1 0.636487
2 -0.987621
dtype: float64

  tail() 返回的是后 n 行数据,默认为后 5 行。示例如下:

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(4))
#原series
print(s)
#输出后两行数据
print (s.tail(2))

输出结果:

原Series输出:
0 0.053340
1 2.165836
2 -0.719175
3 -0.035178
输出后两行数据:
dtype: float64
2 -0.719175
3 -0.035178
dtype: float64

5.2 isnull()&nonull()检测缺失值

  isnull() 和 nonull() 用于检测 Series 中的缺失值。所谓缺失值,顾名思义就是值不存在、丢失、缺少。

  • isnull():如果为值不存在或者缺失,则返回 True。
  • notnull():如果值不存在或者缺失,则返回 False。

  其实不难理解,在实际的数据分析任物中,数据的收集往往要经历一个繁琐的过程。在这个过程中难免会因为一些不可抗力,或者人为因素导致数据丢失的现象。这时,我们可以使用相应的方法对缺失值进行处理,比如均值插值、数据补齐等方法。上述两个方法就是帮助我们检测是否存在缺失值。示例如下:

import pandas as pd
#None代表缺失数据
s=pd.Series([1,2,5,None])
print(pd.isnull(s)) #是空值返回True
print(pd.notnull(s)) #空值返回False

  输出结果:

0    False
1 False
2 False
3 True
dtype: bool notnull():
0 True
1 True
2 True
3 False
dtype: bool

Lesson3——Pandas Series结构的更多相关文章

  1. python pandas.Series&&DataFrame&& set_index&reset_index

    参考CookBook :http://pandas.pydata.org/pandas-docs/stable/cookbook.html Pandas set_index&reset_ind ...

  2. Lesson4——Pandas DataFrame结构

    pandas目录 思维导图 1 简介 DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一. 2 认识DataFrame结构 Data ...

  3. pandas Series的sort_values()方法

    pandas Series的 sort_values() 方法能对Series进行排序,返回一个新的Series: s = pd.Series([np.nan, 1, 3, 10, 5]) 升序排列: ...

  4. pandas.Series

    1.系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. Pandas系列可以使用以下构造函数创建 - pandas.Series ...

  5. pandas数组(pandas Series)-(5)apply方法自定义函数

    有时候需要对 pandas Series 里的值进行一些操作,但是没有内置函数,这时候可以自己写一个函数,使用 pandas Series 的 apply 方法,可以对里面的每个值都调用这个函数,然后 ...

  6. pandas数组(pandas Series)-(4)NaN的处理

    上一篇pandas数组(pandas Series)-(3)向量化运算里说到,将两个 pandas Series 进行向量化运算的时候,如果某个 key 索引只在其中一个 Series 里出现,计算的 ...

  7. pandas数组(pandas Series)-(3)向量化运算

    这篇介绍下有index索引的pandas Series是如何进行向量化运算的: 1. index索引数组相同: s1 = pd.Series([1, 2, 3, 4], index=['a', 'b' ...

  8. pandas数组(pandas Series)-(2)

    pandas Series 比 numpy array 要强大很多,体现在很多方面 首先, pandas Series 有一些方法,比如: describe 方法可以给出 Series 的一些分析数据 ...

  9. python. pandas(series,dataframe,index) method test

    python. pandas(series,dataframe,index,reindex,csv file read and write) method test import pandas as ...

随机推荐

  1. 【LeetCode】678. Valid Parenthesis String 解题报告(Python)

    [LeetCode]678. Valid Parenthesis String 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人 ...

  2. Regularizing Deep Networks with Semantic Data Augmentation

    目录 概 主要内容 代码 Wang Y., Huang G., Song S., Pan X., Xia Y. and Wu C. Regularizing Deep Networks with Se ...

  3. MySQL高级查询与编程作业目录 (作业笔记)

    MySQL高级查询与编程笔记 • [目录] 第1章 数据库设计原理与实战 >>> 第2章 数据定义和操作 >>> 2.1.4 使用 DDL 语句分别创建仓库表.供应 ...

  4. Java Springboot webSocket简单实现,调接口推送消息到客户端socket

    Java Springboot webSocket简单实现,调接口推送消息到客户端socket 后台一般作为webSocket服务器,前台作为client.真实场景可能是后台程序在运行时(满足一定条件 ...

  5. LDAP客户端安装

    安装环境: 10.43.159.7 客户端 使用ldap客户端验证登陆: 用户为10.43.159.9服务端上面创建的ldap:zdh1234 1.安装LDAP client认证需要的pam包 yum ...

  6. frontend-maven-plugin插件问题解决

    1.插件介绍 frontend-maven-plugin为项目本地下载/安装Node和NPM,运行npm install命令 . 它适用于Windows,OS X和Linux. 这个插件也可以下载No ...

  7. 分享一个自研开发的QA自动化审计工具-Sonar检查

    评价一个系统或软件的质量高低,我始终认为除了需求和设计外,代码质量很重要,一个高质量的系统或软件,并不是被测试出来的,更多的是要靠设计和开发出来的.目前也有很多自动化的测试工具,更多的是从功能和性能角 ...

  8. 【Python+Django+Pytest】数据库异常pymysql.err.InterfaceError: (0, '') 解决方案

    问题背景: 接口自动化测试平台,在执行测试案例之外,还需要做以下五件事情(或步骤): 1.查询用户在数据准备中预置的测试套件层数据初始化相关sql  (setUp_class方法中) 2.查询用户在数 ...

  9. Nginx 管理可视化神器!通过界面完成配置监控,一条龙

    作者:Posted 来源:https://leanote.zzzmh.cn/blog/post/5cc7f63616199b068300001c   https://mp.weixin.qq.com/ ...

  10. 灵雀云Kube-OVN进入CNCF沙箱,成为CNCF首个容器网络项目

    昨日,云原生计算基金会 (CNCF) 宣布由灵雀云开源的容器网络项目Kube-OVN 正式进入 CNCF 沙箱(Sandbox)托管.这是全球范围内首个被CNCF纳入托管的开源CNI网络项目,也是国内 ...