2D池化IPoolingLayer
2D池化IPoolingLayer
IPooling层在通道内实现池化。支持的池类型为最大, 平均 和 最大平均混合。
层描述:二维池化
使用张量上的2D滤波器计算池化a tensor A, of dimensions a, to produce a tensor B, of dimensions b。b的尺寸取决于乙 尺寸, 视窗大小 R,对称填充 p ,stride大小 s 这样:
- b = [a0a1...an-3bn-2bn-1]
- bn-2 = (an-2+2p0-r0)/s0+1
- bn-1 = (an-1+2p1-r1)/s1+1
张量 C 是A with dimensions[a0a1...an-2+2p0an-1+2p1]零填充copy。Bj......kl= func(Cj…. k:kk l:ll) wherekk = k+r0-1,andll = l+r1-1。 Func是一种池化类型。
PoolingType::kMAX
窗口中元素的最大值。
Maximum over elements in window.
PoolingType::kAVERAGE
窗口中元素的平均值。
Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND
最大池和平均池的混合。最大合并和平均合并的结果与混合因子组合为
(1-blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to yield the result. The blendFactor can be set to a value between 0 and 1.
blendFactor可以被设置为0和1之间的值。
默认情况下,对池化窗口和填充的输入之间的重叠执行平均池化。如果互斥参数设置为true,则对池化窗口和未填充输入之间的重叠区域执行平均池化。
层描述:3D池化
使用张量上的3D滤镜计算池化 a tensor A, of dimensions a, to produce a tensor B, of dimensions b。b的尺寸乙 取决于a尺寸,视窗大小 R,对称填充 p ,步长 s 这样:
- b = [a0a1...an-4bn-3bn-2bn-1]
- bn-3 = (an-3+2p0-r0)/s0+1
- bn-2 = (an-2+2p1-r1)/s1+1
- bn-1 = (an-1+2p2-r2)/s2+1
设张量 C 是A with dimensions [a0a1... an-3+2p0an-2+2p1an-1+2p2]的零填充copy。 一其中,Bj......klm= func(Cj…. k:kk l:ll m:mm) wherekk = k+r0-1,ll = l+r1-1, andmm = m+r2-1。
func 由池化类型之一t定义 :
oolingType::kMAX
窗口中元素的最大值。
Maximum over elements in window.
PoolingType::kAVERAGE
窗口中元素的平均值。
Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND
最大池和平均池的混合。最大合并和平均合并的结果与混合因子组合为
(1-blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to yield the result. The blendFactor can be set to a value between 0 and 1.
blendFactor可以被设置为0和1之间的值
默认情况下,对池化窗口和填充的输入之间的重叠执行平均池化。如果互斥参数设置为true,则对池化窗口和未填充输入之间的重叠区域执行平均池化。
条件与限制
2D或3D由输入内核尺寸的数量确定。对于2D合并,输入和输出张量应具有3个或更大的尺寸。对于3D池,输入和输出张量应具有4个或更大的尺寸。
参阅C ++类 IPooling层或Python类 IPooling层 有关更多详细信息。
2D池化IPoolingLayer的更多相关文章
- Deep Learning 学习随记(七)Convolution and Pooling --卷积和池化
图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接 ...
- tensorflow 卷积/反卷积-池化/反池化操作详解
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_bac ...
- UFLDL教程笔记及练习答案五(自编码线性解码器与处理大型图像**卷积与池化)
自己主动编码线性解码器 自己主动编码线性解码器主要是考虑到稀疏自己主动编码器最后一层输出假设用sigmoid函数.因为稀疏自己主动编码器学习是的输出等于输入.simoid函数的值域在[0,1]之间,这 ...
- Keras深度神经网络算法模型构建【输入层、卷积层、池化层】
一.输入层 1.用途 构建深度神经网络输入层,确定输入数据的类型和样式. 2.应用代码 input_data = Input(name='the_input', shape=(1600, 200, 1 ...
- 【小白学PyTorch】21 Keras的API详解(下)池化、Normalization层
文章来自微信公众号:[机器学习炼丹术].作者WX:cyx645016617. 参考目录: 目录 1 池化层 1.1 最大池化层 1.2 平均池化层 1.3 全局最大池化层 1.4 全局平均池化层 2 ...
- MinkowskiPooling池化(下)
MinkowskiPooling池化(下) MinkowskiPoolingTranspose class MinkowskiEngine.MinkowskiPoolingTranspose(kern ...
- MinkowskiPooling池化(上)
MinkowskiPooling池化(上) 如果内核大小等于跨步大小(例如kernel_size = [2,1],跨步= [2,1]),则引擎将更快地生成与池化函数相对应的输入输出映射. 如果使用U网 ...
- SoftPool:基于Softmax加权的池化操作 | 2021新文
SoftPool使用softmax进行加权池化,能够保持特征的表达性并且是可微操作.从性能和准确率来看,SoftPool是目前的常规池化方法的一个不错的替代品 来源:晓飞的算法工程笔记 公众号 论 ...
- 测试EntityFramework,Z.EntityFramework.Extensions,原生语句在不同的查询中的表现。原来池化与非池化设定是有巨大的影响的。
Insert测试,只测试1000条的情况,多了在实际的项目中应该就要另行处理了. using System; using System.Collections.Generic; using Syste ...
随机推荐
- Linux中数据库的安装和配置(MySQL与Maria DB)
目录 MySQL和Maria DB的介绍 MySQL和Maria DB的安装 yum源安装MySQL(Centos6.5+Mysql5.1) 源码包安装MySQL yum源安装Maria DB 源码包 ...
- hdu4932 小贪心
题意: 给了一些处在x轴上的点,要求我们用长度相等的线段覆盖所有点,线段和线段之间不能重叠,问线段最长可以使多长. 思路: 一开始一直在想二分,哎!感觉这个题目很容易就往二分上去 ...
- 将HTML字符串编译为虚拟DOM对象的基础实现
本文所有代码均保存在HouyunCheng / mini-2vdom 虚拟DOM只是实现MVVM的一种方案,或者说是视图更新的一种策略,是实现最小化更新的diff算法的操作对象. 创建扫描器 所有编译 ...
- Jedis基础详解
Jedis 使用Java来操作Redis 什么是Jedis 是Redis官方推荐的Java操作Redis中间件, 如果你要使用Java操作Redis, 那么就该对jedis熟悉 测试 导入对应的依赖 ...
- thinkphp 连接多个数据库(tp5.1为例)
1.config目录下添加数据库配置,内容跟原数据库配置一样就可以(数据库名改成连接的第二个数据库名) 2.连接部分代码: $db = Db::connect(config('database2.') ...
- RESTful中的PUT和PATCH实践
先放上后台的在线API文档:SkyBlog Swagger API 在UserApi中,有这样三个接口1. PUT /users/{id} 更新用户信息2. PATCH /users/role/{id ...
- 正则表达式:(mysql)REGEXP
检索列prod_name包含文本1000的所以行 SELECT prod_name FROM products WHERE prod_name REGEXP '1000' ORDER BY prod ...
- c++通讯录管理系统
代码拷贝 #include<iostream> #include<string> #include<stdlib.h> #define MAX 1000 using ...
- 手把手教你看MySQL官方文档
前言: 在学习和使用MySQL的过程中,难免会遇到各种问题.不知道当你遇到相关问题时会怎么做,我在工作或写文章的过程中,遇到不懂或需要求证的问题时通常会去查阅官方文档.慢慢的,阅读文档也有了一些经验, ...
- MindSpore模型验证
技术背景 在前面一篇博客中,我们介绍了MindSpore在机器学习过程中保存和加载模型的方法.这种将模型存储为静态文件的做法,使得我们可以更灵活的使用训练出来的模型,比如用于各种数据集的验证,或者是迁 ...