【笔记】ROC曲线
ROC曲线
前文讲了PR曲线
这里说ROC曲线,其描述的是TPR和FPR之间的关系
TPR是什么呢,TPR就是召回率

FPR是什么呢,FPR就是和TPR对应的,即真实值为0的一行中的预测为1的部分比例

和精准率和召回率一样,TPR和FPR之间也有着内在的联系,TPR越高,FPR越高,反之一样,ROC曲线就是刻画这样的关系的曲线

快速的实现一下TPR和FPR的函数,在python chame中的metrics中写入下列代码,依次是实现TN,FP,FN,TP,混淆矩阵,精准率,召回率,F1 score,TPR,FPR,前面部分都在前面博客有相应的原理的代码,关于TPR和FPR的,也只是将公示带入使用
代码如下
def TN(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 0) & (y_predict == 0))
def FP(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 0) & (y_predict == 1))
def FN(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 1) & (y_predict == 0))
def TP(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 1) & (y_predict == 1))
def confusion_matrix(y_true, y_predict):
return np.array([
[TN(y_true, y_predict), FP(y_true, y_predict)],
[FN(y_true, y_predict), TP(y_true, y_predict)]
])
def precision_score(y_true, y_predict):
assert len(y_true) == len(y_predict)
tp = TP(y_true, y_predict)
fp = FP(y_true, y_predict)
try:
return tp / (tp + fp)
except:
return 0.0
def recall_score(y_true, y_predict):
assert len(y_true) == len(y_predict)
tp = TP(y_true, y_predict)
fn = FN(y_true, y_predict)
try:
return tp / (tp + fn)
except:
return 0.0
def f1_score(y_true, y_predict):
precision = precision_score(y_true, y_predict)
recall = recall_score(y_true, y_predict)
try:
return 2 * precision * recall / (precision + recall)
except:
return 0.0
def TPR(y_true, y_predict):
tp = TP(y_true, y_predict)
fn = FN(y_true, y_predict)
try:
return tp / (tp + fn)
except:
return 0.
def FPR(y_true, y_predict):
fp = FP(y_true, y_predict)
tn = TN(y_true, y_predict)
try:
return fp / (fp + tn)
except:
return 0.
具体使用
(在notebook中)
使用手写数据集,进行先前的操作布置好需要的变量以及数据分割,不再赘述
使用封装好的FPR和TPR,和前面绘制PR曲线的思想一致,然后绘制图像
from metrics import FPR,TPR
fprs = []
tprs = []
thresholds = np.arange(np.min(decision_scores),np.max(decision_scores),0.1)
for threshold in thresholds:
y_predict = np.array(decision_scores >= threshold,dtype='int')
fprs.append(FPR(y_test,y_predict))
tprs.append(TPR(y_test,y_predict))
plt.plot(fprs,tprs)
图像如下

使用sklearn中的ROC曲线,调用方式和先前PR曲线的使用很像,绘制图像
from sklearn.metrics import roc_curve
fprs, tprs, thresholds = roc_curve(y_test,decision_scores)
plt.plot(fprs,tprs)
图像如下(ROC曲线下的面积可以作为一个指标)

求解的话一样可以使用sklearn中的roc_auc_score,即可求出面积值的作为的指标
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test,decision_scores)
结果如下

可以看出来,ROC的指标对偏斜的数据不算敏感,不想精准率和召回率那样敏感,所以针对极度偏斜的数据使用精准率和召回率是不错的,ROC曲线的应用场景是可以确定更好的模型,即面积更大模型

【笔记】ROC曲线的更多相关文章
- PR曲线,ROC曲线,AUC指标等,Accuracy vs Precision
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又 ...
- R语言︱ROC曲线——分类器的性能表现评价
笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetiv ...
- 分类器评估方法:ROC曲线
注:本文是人工智能研究网的学习笔记 ROC是什么 二元分类器(binary classifier)的分类结果 ROC空间 最好的预测模型在左上角,代表100%的灵敏度和0%的虚警率,被称为完美分类器. ...
- Mean Average Precision(mAP),Precision,Recall,Accuracy,F1_score,PR曲线、ROC曲线,AUC值,决定系数R^2 的含义与计算
背景 之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任 ...
- ROC曲线、PR曲线
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像. ...
- 精确率与召回率,RoC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...
- 【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积
题记: 近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用 ...
- 机器学习之分类器性能指标之ROC曲线、AUC值
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...
- [zz] ROC曲线
wiki https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF 在信号检测理论中,接收者操作特征曲线(receiver operating chara ...
随机推荐
- Linux date 获取时间
获取当前日期: ubuser@ubuser-OptiPlex-7010:~$ date +%Y_%m_%d2020_12_16 获取当前时间: ubuser@ubuser-OptiPlex-7010: ...
- mqtt 集成
-- 在pom.xml导入依赖 <!-- mqtt --> <dependency> <groupId>org.springframework.boot</g ...
- Vue Router的原理及history模式源码实现
Hash 模式 URL中 # 后面的内容作为路径地址,可以通过location.url直接切换路由地址,如果只改变了#后面的内容,浏览器不会向服务器请求这个地址,会把这个地址 记录到浏览器的访问历史中 ...
- css 层叠上下文和层叠顺序
层叠上下文是css中的一个三维概念,拥有层叠上下文的元素在z轴上比普通元素要高,而且其内部的所有内容是自成体系的,其后代都是在它的层叠顺序中 哪些元素拥有层叠上下文 1.根元素,也就是html默认拥有 ...
- 必须要了解的Linux基本操作
Linux常用的基础操作 1.命令行提示字符 2.切换用户 3.查看当前主机的完整名称 4.临时设置主机 ...
- Mycat读写分离的简单实现
目录 1.Mycat读写分离的配置 1.1.Mycat是什么 1.2.Mycat能干什么 1.2.1.数据库的读写分离 1.2.1.1.数据库读写分离图解 1.2.2.数据库分库分表 1.2.2.1. ...
- Pytest单元测试框架之FixTure基本使用
前言: 在单元测试框架中,主要分为:测试固件,测试用例,测试套件,测试执行及测试报告: 测试固件不难理解,也就是我们在执行测试用例前需要做的动作和测试执行后的需要做的事情: 比如在UI自动化测试中,我 ...
- HCNA Routing&Switching之动态路由协议OSPF DR和BDR
前文我们了解了OSPF建立邻居关系的条件,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15032907.html:今天我们来聊一聊OSPF中的DR和BDR: ...
- sync/fsync/fdatasync的简单比较
此文主要转载自 http://blog.csdn.net/zbszhangbosen/article/details/7956558 官网上有关于MySQL的flush method的设置参数说明,但 ...
- sql语句优化原理
前言 网上有很多关于sql语句优化的文章,我这里想说下为什么这样...写sql语句,能够提高查询的效率. 1 sql语句优化原理 要想写出好的sql,就要学会用数据库的方式来思考如何执行sql,那么什 ...