题目大概说要用m个工厂生产n个玩具,第i个玩具在第j个工厂生产要Zij的时间,一个工厂同一时间只能生成一个玩具,问最少的用时。

这题建的图不是很直观。。

  • 源点向玩具连容量1费用0的边
  • 将每个工厂拆成n个点,向汇点连容量1费用0的边
  • 第i个玩具向第j个工厂拆的第k个点连容量1费用k*Zij的边

如此跑最小费用最大流。。。就是答案了。。画画图写写计算一下就能知道。。。。原谅我太懒。。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 2555
#define MAXM 2555*5555 struct Edge{
int u,v,cap,cost,next;
}edge[MAXM];
int head[MAXN];
int NV,NE,vs,vt; void addEdge(int u,int v,int cap,int cost){
edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].u=v; edge[NE].v=u; edge[NE].cap=; edge[NE].cost=-cost;
edge[NE].next=head[v]; head[v]=NE++;
}
bool vis[MAXN];
int d[MAXN],pre[MAXN];
bool SPFA(){
for(int i=;i<NV;++i){
vis[i]=; d[i]=INF;
}
vis[vs]=; d[vs]=;
queue<int> que;
que.push(vs);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap && d[v]>d[u]+edge[i].cost){
d[v]=d[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=;
que.push(v);
}
}
}
vis[u]=;
}
return d[vt]!=INF;
}
int MCMF(){
int res=;
while(SPFA()){
int flow=INF,cost=;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
flow=min(flow,edge[pre[u]].cap);
}
for(int u=vt; u!=vs; u=edge[pre[u]].u){
edge[pre[u]].cap-=flow;
edge[pre[u]^].cap+=flow;
cost+=flow*edge[pre[u]].cost;
}
res+=cost;
}
return res;
} int main(){
int t,n,m,a;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
vs=n*m+n; vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<n; ++i){
addEdge(vs,i,,);
for(int j=; j<m; ++j){
scanf("%d",&a);
for(int k=; k<n; ++k){
addEdge(i,j+k*m+n,,(k+)*a);
}
}
}
for(int j=; j<m; ++j){
for(int k=; k<n; ++k){
addEdge(j+k*m+n,vt,,);
}
}
printf("%.6f\n",MCMF()*1.0/n);
}
return ;
}

POJ3686 The Windy's(最小费用最大流)的更多相关文章

  1. POJ 3686 The Windy's 最小费用最大流

    每个工厂拆成N个工厂,费用分别为1~N倍原费用. //#pragma comment(linker, "/STACK:1024000000,1024000000") #includ ...

  2. POJ 3686:The Windy's(最小费用最大流)***

    http://poj.org/problem?id=3686 题意:给出n个玩具和m个工厂,每个工厂加工每个玩具有一个时间,问要加工完这n个玩具最少需要等待的平均时间.例如加工1号玩具时间为t1,加工 ...

  3. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  4. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  5. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. P3381 【模板】最小费用最大流

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...

  8. 【BZOJ-3876】支线剧情 有上下界的网络流(有下界有源有汇最小费用最大流)

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 821  Solved: 502[Submit][Status ...

  9. hdu 4411 2012杭州赛区网络赛 最小费用最大流 ***

    题意: 有 n+1 个城市编号 0..n,有 m 条无向边,在 0 城市有个警察总部,最多可以派出 k 个逮捕队伍,在1..n 每个城市有一个犯罪团伙,          每个逮捕队伍在每个城市可以选 ...

随机推荐

  1. 关于Visual Studio 2013 编译 multi-byte character set MFC程序出现 MSB8031 错误的解决办法

    转自:http://blog.csdn.net/xiaochunzao/article/details/16987703 Visual Studio 2013 编译旧的 multi-byte char ...

  2. eclipse svn设置忽略文件

  3. 3.2 STL中的函数对象类模板

    *: STL中有一些函数对象类模板,如下所示: 1)例如要求两个double类型的x 和y 的积,可以: multiplies<double>()(x,y); 该表达式的值就是x*y的值. ...

  4. 使用C与C++混合编程封装UDP协议

    引入头文件,导入lib文件 #include <stdio.h> #include <stdlib.h> #include <string.h> #include ...

  5. java 缩略图

    http://www.cnblogs.com/digdeep/p/4829471.html http://www.jb51.net/article/57648.htm http://blog.csdn ...

  6. 重温WCF之WCF中可靠性会话(十四)

    1.WCF中可靠性会话在绑定层保证消息只会被传输一次,并且保证消息之间的顺序.当使用TCP(Transmission Control Protocol,传输控制协议)通信时,协议本身保证了可靠性.然而 ...

  7. Delphi编译dll时出错"Cannot debug project unless a host application is defined.use the run|parameters...dialog box."

    问题: 在编写DLL程序的时候,按下F9或者按下那个绿色的箭头,会报错,如下 原因: 是因为你按下的F9或者那个绿色箭头是表示“Run”这个程序,但是DLL不是可执行文件,所以当然不能够运行,所以就会 ...

  8. ExcelReport第二篇:ExcelReport源码解析

    导航 目   录:基于NPOI的报表引擎——ExcelReport 上一篇:使用ExcelReport导出Excel 下一篇:扩展元素格式化器 概述 针对上一篇随笔收到的反馈,在展开对ExcelRep ...

  9. android 入门-android Studio 配置

    重要:sdk 最好先有一个版本 19版本.build-tools 19.1.0 extras 19.0和platforms android-19 1.下载android sdk 和jdk 并配置环境变 ...

  10. wp8 入门到精通 数据库更新字段(一)

    public class UserInfoDB : BaseDB { public UserInfoDB() : base(@"Data Source=isostore:\MakeLove\ ...