CF#335 Lazy Student
2 seconds
256 megabytes
standard input
standard output
Student Vladislav came to his programming exam completely unprepared as usual. He got a question about some strange algorithm on a graph — something that will definitely never be useful in real life. He asked a girl sitting next to him to lend him some cheat papers for this questions and found there the following definition:
The minimum spanning tree T of graph G is such a tree that it contains all the vertices of the original graph G, and the sum of the weights of its edges is the minimum possible among all such trees.
Vladislav drew a graph with n vertices and m edges containing no loops and multiple edges. He found one of its minimum spanning trees and then wrote for each edge its weight and whether it is included in the found tree or not. Unfortunately, the piece of paper where the graph was painted is gone and the teacher is getting very angry and demands to see the original graph. Help Vladislav come up with a graph so that the information about the minimum spanning tree remains correct.
The first line of the input contains two integers n and m () — the number of vertices and the number of edges in the graph.
Each of the next m lines describes an edge of the graph and consists of two integers aj and bj (1 ≤ aj ≤ 109, bj = {0, 1}). The first of these numbers is the weight of the edge and the second number is equal to 1 if this edge was included in the minimum spanning tree found by Vladislav, or 0 if it was not.
It is guaranteed that exactly n - 1 number {bj} are equal to one and exactly m - n + 1 of them are equal to zero.
If Vladislav has made a mistake and such graph doesn't exist, print - 1.
Otherwise print m lines. On the j-th line print a pair of vertices (uj, vj) (1 ≤ uj, vj ≤ n, uj ≠ vj), that should be connected by the j-th edge. The edges are numbered in the same order as in the input. The graph, determined by these edges, must be connected, contain no loops or multiple edges and its edges with bj = 1 must define the minimum spanning tree. In case there are multiple possible solutions, print any of them.
4 5
2 1
3 1
4 0
1 1
5 0
2 4
1 4
3 4
3 1
3 2
3 3
1 0
2 1
3 1
-1
题意:首先先取一个图的其中一个MST,给出这个图的所有边权,以及每条边是否在这个MST里。要你按照这些边权构造一个图,使得这个MST仍是你构造的那个图的其中一个MST。
分析:考虑Kruscal的过程。
不妨假设MST的边都连着1,即这些边是1-2,1-3,1-4,。。。。1-n这样连的。
那Kruscal的过程中,如果一条边不选,必定连着前面的任意两个点。
注意考虑边权相同,MST不唯一的情况。
至于某条不是MST的边如何连前面两个点,随便维护一下就好。
/**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
struct EdgeType
{
int index, value;
bool select;
int u, v; inline bool operator <(const EdgeType &t) const
{
if(value != t.value) return value < t.value;
if(select ^ t.select) return select > t.select;
return index < t.index;
}
} arr[N];
typedef pair<int, int> Edge;
priority_queue<Edge> que;
int n, m; inline void Input()
{
n = Getint();
m = Getint();
for(int i = ; i < m; i++)
{
arr[i].value = Getint();
arr[i].select = Getint();
arr[i].index = i;
}
} inline bool CompareByIndex(const EdgeType &a, const EdgeType &b)
{
return a.index < b.index;
} inline void Solve()
{
sort(arr, arr + m); int now = ;
for(int i = ; i < m; i++)
{
if(arr[i].select)
{
arr[i].u = , arr[i].v = ++now;
if(now > ) que.push(Edge(now, now));
}
else
{
if(que.empty())
{
puts("-1");
return;
}
Edge t = que.top();
que.pop();
arr[i].u = --t.first, arr[i].v = t.second;
if(t.first > ) que.push(t);
}
} sort(arr, arr + m, CompareByIndex);
for(int i = ; i < m; i++) printf("%d %d\n", arr[i].u, arr[i].v);
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}
CF#335 Lazy Student的更多相关文章
- Codeforces Round #335 (Div. 2) D. Lazy Student 贪心
D. Lazy Student Student Vladislav came to his programming exam completely unprepared as usual. He ...
- Codeforces Round #335 (Div. 2) D. Lazy Student 构造
D. Lazy Student Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/606/probl ...
- Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造
题目链接: http://codeforces.com/contest/606/problem/D D. Lazy Student time limit per test2 secondsmemory ...
- 605B. Lazy Student(codeforces Round 335)
B. Lazy Student time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- cf 605B B. Lazy Student 构造 好题
题意: 一个n个节点的图,有m条边,已知这个图的一个mst 现在如果我们知道这个图的m条边,和知道mst的n-1条边是哪些,问能不能构造出一个满足条件的图 思路:排序+构造 数组deg[i]表示节点i ...
- CF#335 Freelancer's Dreams
Freelancer's Dreams time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 【22.73%】【codeforces 606D】Lazy Student
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- CF#335 Intergalaxy Trips
Intergalaxy Trips time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- CF#335 Board Game
Board Game time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...
随机推荐
- Web.Config如何输入特殊字符
- Git 操作的一些场景
1. 某些不需要的文件/文件夹,如:/build 之类,在添加对应的gitignore之前Push了,导致每次编译都会产生新的文件 解决方法:直接删掉不需要的文件/文件夹,然后push gitigno ...
- 体系结构设计MVC
体系结构设计MVC(viso图)GIT: https://coding.net/u/lklzjh/p/travel/git/blob/master/%E4%BD%93%E7%B3%BB%E7%BB%9 ...
- Python下安装MySQLdb
前提是你已经安装过mysql 1.从https://pypi.python.org/pypi/MySQL-python/下载MySQL-python,然后用rz命令上传到相关目录 2.用tar -zx ...
- linux文件描述符open file descriptors与open files的区别
一个文件被打开,也可能没有文件描述符,比如current working diretories,memory mapped files and executable text files ;losf可 ...
- 设计模式学习之命令模式(Command,行为型模式)(12)
一.命令模式的定义 命令模式属于对象的行为型模式.命令模式是把一个操作或者行为抽象为一个对象中,通过对命令的抽象化来使得发出命令的责任和执行命令的责任分隔开.命令模式的实现可以提供命令的撤销和恢复功能 ...
- poj 1724:ROADS(DFS + 剪枝)
ROADS Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10777 Accepted: 3961 Descriptio ...
- Javascript事件冒泡机制
1. 事件 在浏览器客户端应用平台,基本生都是以事件驱动的,即某个事件发生,然后做出相应的动作. 浏览器的事件表示的是某些事情发生的信号.事件的阐述不是本文的重点,尚未了解的朋友,可以访问W3scho ...
- Visual Studio 2015的Web扩展包
过去几年,Visual Studio扩展功能生态系统得到了蓬勃发展,社区贡献出了大量优秀的扩展,其中也包括大量针对Web开发的扩展.但是很多时候,感觉寻找.安装.更新好 几个扩展,总显得比较麻烦.如果 ...
- 严重: End event threw exception java.lang.IllegalArgumentException: Can't convert argument: null
堆栈信息: 2014-6-17 10:33:58 org.apache.tomcat.util.digester.Digester endElement 严重: End event threw exc ...