Coursera台大机器学习课程笔记3 – 机器学习的可能性
提纲:
- 机器学习为什么可能?
- 引入计算橙球概率问题
- 通过用Hoeffding's inequality解决上面的问题,并得出PAC的概念,证明采样数据学习到的h的错误率可以和全局一致是PAC的
- 将得到的理论应用到机器学习,证明实际机器是可以学习
机器学习的大多数情况下是让机器通过现有的训练集(D)的学习以获得预测未知数据的能力,即选择一个最佳的h做为学习结果,那么这种预测是可能的么?为什么在采样数据上得到的h可以认为适用于全局,也就是说其泛化性的本质是什么?
课程首先引入一个情景:
如果有一个装有很多(数量很大以至于无法通过数数解决)橙色球和绿色球的罐子,我们能不能推断橙色球的比例?
很明显的思路是利用统计中抽样的方法,既然我们无法穷尽数遍所有罐子中的球,不如随机取出几个球,算出其中两种颜色球的比例去近似得到我们要的答案,
这样真的可以么?我们都知道小概率事件也会发生,假如罐子里面大部分都是橙色球,而我们恰巧取出的都是绿色,这样我们就判断错了,那么到底通过抽样得出的比例能够说明什么呢?似乎两者不能直接划等号。
由此,课程中引入了一个非常重要的概念,PAC,要理解这个,先得理解一个超级重要的不等式:Hoeffding's inequality
这个不等书说明了对于未知的那个概率,我们的抽样概率可以根它足够接近只要抽样的样本够大或者容忍的限制变松,这个和我们的直觉是相符的。式子最后给出了PAC的概念,即概率上几乎正确。所以,我们通过采用算出的橙球的概率和全局橙球的概率相等是PAC的。
这些和机器学习有什么关系?其实前文中提到的例子可以和机器学习问题一一对应:
映射中最关键的点是讲抽样中橙球的概率理解为样本数据集D上h(x)错误的概率,以此推算出在所有数据上h(x)错误的概率,这也是机器学习能够工作的本质,即我们为啥在采样数据上得到了一个假设,就可以推到全局呢?因为两者的错误率是PAC的,只要我们保证前者小,后者也就小了。
- M小,N足够大,可以使得假设具有良好的泛化能力;
- 如果同时,Ein很小,那么这个假设就是有效地。机器是可以学习的,学习到的就是这个表现最好的假设。
整体证明机器可以学习分了两个层面,首先对于单个假设,根据Hoeffding不等式,当N很大时,其泛化能力强是PAC的;而实际上机器学习是从众多假设中挑Ein最小的(通过测试集找)假设,这个的理论基础是当M不大,N大,选到泛化能力差的假设概率低(用到了单个假设的结论)。
Coursera台大机器学习课程笔记3 – 机器学习的可能性的更多相关文章
- Coursera台大机器学习课程笔记3 – 机器学习的分类和机器学习的可能性
第三讲比较简单,参考:http://www.cnblogs.com/HappyAngel/p/3466527.html 第四讲很抽象,尤其是第四个视频,目的仍然是为了证明机器学习是可能的,不过这个博主 ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- Coursera台大机器学习基础课程学习笔记2 -- 机器学习的分类
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构 ...
- Coursera台大机器学习基础课程1
Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitche ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
随机推荐
- iOS 9之适配ATS(转载)
iOS 9系统已经出来了,而网络方面的ATS(App Transport Security)特性可以说每个人都要经历.而我这篇博客,就是结合我最近几天的经历,来谈谈从服务器到iOS客户端对ATS的适配 ...
- 转 Datatables中文API——基本参数
鉴于自己一直在使用datatables,发现这是个很不错的表格插件,但是好的东西都是英文的,所以我结合自己的使用经验,把官网的英文api做下简单的翻译,同时也希望大家把自己的使用经验一起分享出来,让我 ...
- 百度ueditor 拖文件或world 里面复制粘贴图片到编辑中 上传到第三方问题
我这边从world 里面复制粘贴图片到编辑器中,它自动给我上传了,但是我是用的第三方的要设置一个token值,我找了很久,也没有找到应该在哪里设置这个上传的参数,如果是点击图片上传,我知道在dialo ...
- Jenkins 2.7.3 LTS 发布
更新如下: Stop A/B testing of the remoting JNLP3 protocol due to the known issues. The protocol can be e ...
- 【java】[转]标记接口和标记注解注解
Java中的标记接口和标记注解 http://blog.sina.com.cn/s/blog_7fdce91f0101d93m.html
- Odoo SSO 单点登录
很多公司会有内部单点登录系统,采用Odoo系统的公司可能就有需要将Odoo接入公司内部的单点登录系统. 实现的思路很简单,由于每个公司的系统不一样,代码仅作示例说明. 首先,重写Odoo登录界面: & ...
- insertAfter的兼容性
function insertAfter(newElement,targetElement){ var parent=targetElement.parentNode; if(parent ...
- scala case class
在我们详细介绍Scala的Case class和模式匹配之前,我们可以通过一个简单的例子来说明一些基本概念.我们设计一个函数库,这个函数库可以用来计算算术表达式,为简单起见,我们设计的算术表达式只侧重 ...
- html代码中的form参数是基本一致的
由于pear的大多数模块仍处于开发当中,因此,这里列举的是随着php4.05一起发布的pear中的模块,需要注意的是,一些抽象类或者是基类(如mail.php,log.php,cache.php)没有 ...
- A trip through the Graphics Pipeline 2011_09_Pixel processing – “join phase”
Welcome back! This post deals with the second half of pixel processing, the “join phase”. The pre ...