【转载请注明出处】http://www.cnblogs.com/mashiqi

Today let's talk about a intuitive explanation of Benjamini-Hochberg Procedure. My teacher Can told me this explanation.

Suppose there are $M$ hypothesis:$$H_1,H_2,\cdots,H_M$$and corresponding $M$ p-values:$$p_1,p_2,\cdots,p_M$$Let's suppose $p_i$ are in ascending order: $p_1 \leq p_2 \leq \cdots \leq p_M$ for convenience. Now we want to let the FDR to be a positive scale, say $\alpha$, then what is the threshold value $p$ that can be used to reject hypotheses.

We know that the Benjamini-Hochberg Procedure is like this: let $k$ be the largest i for which $p_i \leq \frac{i}{M} \alpha$, then reject all $H_i,~i=1,2,\cdots,k$.

We wants to ask why this above gives the FDR at $\alpha$? Let's consider a probability $p$, the threshold value. If we reject all $H_i$ thich satisfy corresponding $p_i \leq p$, then the FDR is at $\alpha$. But how do we get the value of $p$? Let's take a look at the exact definition of False Discovery Rate:$$FDR = E[\frac{ \sharp\{falsely~say~significant\} }{\sharp\{say~significant\}}]$$
The $$\sharp\{say~significant\} = \sharp\{p_i \leq p\}$$. If the $H_i$ is null, then $p_i$ will be uniformly distributed,so $$\sharp\{falsely~say~significant\} = \pi_0 \times p \times M$$, where $\pi_0$ is the non-hypothesis probability. Then we get$$\frac{\pi_0 \times p \times M}{\sharp\{p_i \leq p\}}=\alpha$$

This gives a explanation.

False Discovery Rate, a intuitive explanation的更多相关文章

  1. 文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)

    文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于 ...

  2. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  3. What is an intuitive explanation of the relation between PCA and SVD?

    What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...

  4. An Intuitive Explanation of Fourier Theory

    Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fo ...

  5. An Intuitive Explanation of Convolutional Neural Networks

    https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...

  6. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  7. MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性

    一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...

  8. ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)

      欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...

  9. MAGENTA: Meta-Analysis Gene-set Enrichment of variaNT Associations

    MAGENTA是一款计算工具,利用全基因组遗传数据,计算预先设定的涉及生物过程或者功能性基因集在遗传相关性的富集程度.开发的目的是分析基因型不是现成的数据集,比如大型的全基因组关联荟萃分析.在以下两种 ...

随机推荐

  1. 复旦高等代数 I(15级)思考题

    1.证明: 第三类分块初等变换是若干个第三类初等变换的复合. 特别地, 第三类分块初等变换不改变行列式的值. 2.设 $n\,(n\geq 2)$ 阶方阵 $A=(a_{ij}(x))$, 其中每个元 ...

  2. GZAPI框架初识

    新建一个MVC项目(GZAPIFramework.Demo): mvc:用于API接口文档查看,Log日志查看 webapi:api调用 新建一个Biz类库并添加nuget引用: 搜索GZAPI.Co ...

  3. php手册杂记

    1, strcmp()是比较两个字符串的大小,两个字符串相同时返回0,第一个字符串大于第二个字符串时返回一个正值,否则返回负值.比较两个字符串的算法是:逐个比较两个串中对应的字符,字符大小按照ASCI ...

  4. (二)Kafka动态增加Topic的副本(Replication)

    (二)Kafka动态增加Topic的副本(Replication) 1. 查看topic的原来的副本分布 [hadoop@sdf-nimbus-perf ~]$ le-kafka-topics.sh ...

  5. js原生实现淡入淡出

         转自http://kb.cnblogs.com/page/90854/ 参数说明: fadeIn()与fadeOut()均有三个参数,第一个是事件, 必填; 第二个是淡入淡出速度, 正整数, ...

  6. UI里的UIActionSheet按钮

    1.效果图:分别为有短信分享                                      无短信分享 -(void)viewDidLoad{ //添加按钮 UIButton *share ...

  7. Github上传代码菜鸟超详细教程【转】

    最近需要将课设代码上传到Github上,之前只是用来fork别人的代码. 这篇文章写得是windows下的使用方法. 第一步:创建Github新账户 第二步:新建仓库 第三部:填写名称,简介(可选), ...

  8. Selenium 获取隐藏元素的内容

    第一种 先获取元素通过 属性获取 WebElement webElemt= webElement.findElement(By.xpath("//*[@class='xxxxxx]/a&qu ...

  9. 学完了js的知识,一起分享总结知识点

    又一个知识点学完了,到了总结学习效果和知识总结的时间了.js这个编程语言相对于html和css的逻辑性要强一些,也比较不容易上手.概念性的知识点不难理解,就是实际的操作并不容易,需要通过学习和借鉴案列 ...

  10. 读<jquery 权威指南>[3]-动画

    一. 显示与隐藏——hide(),show() 1. 方法: hide(speed,[callback]); show(speed,[callback]); 说明:这两个方法还可以实现带动画效果的显示 ...