【转载请注明出处】http://www.cnblogs.com/mashiqi

Today let's talk about a intuitive explanation of Benjamini-Hochberg Procedure. My teacher Can told me this explanation.

Suppose there are $M$ hypothesis:$$H_1,H_2,\cdots,H_M$$and corresponding $M$ p-values:$$p_1,p_2,\cdots,p_M$$Let's suppose $p_i$ are in ascending order: $p_1 \leq p_2 \leq \cdots \leq p_M$ for convenience. Now we want to let the FDR to be a positive scale, say $\alpha$, then what is the threshold value $p$ that can be used to reject hypotheses.

We know that the Benjamini-Hochberg Procedure is like this: let $k$ be the largest i for which $p_i \leq \frac{i}{M} \alpha$, then reject all $H_i,~i=1,2,\cdots,k$.

We wants to ask why this above gives the FDR at $\alpha$? Let's consider a probability $p$, the threshold value. If we reject all $H_i$ thich satisfy corresponding $p_i \leq p$, then the FDR is at $\alpha$. But how do we get the value of $p$? Let's take a look at the exact definition of False Discovery Rate:$$FDR = E[\frac{ \sharp\{falsely~say~significant\} }{\sharp\{say~significant\}}]$$
The $$\sharp\{say~significant\} = \sharp\{p_i \leq p\}$$. If the $H_i$ is null, then $p_i$ will be uniformly distributed,so $$\sharp\{falsely~say~significant\} = \pi_0 \times p \times M$$, where $\pi_0$ is the non-hypothesis probability. Then we get$$\frac{\pi_0 \times p \times M}{\sharp\{p_i \leq p\}}=\alpha$$

This gives a explanation.

False Discovery Rate, a intuitive explanation的更多相关文章

  1. 文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)

    文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于 ...

  2. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  3. What is an intuitive explanation of the relation between PCA and SVD?

    What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...

  4. An Intuitive Explanation of Fourier Theory

    Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fo ...

  5. An Intuitive Explanation of Convolutional Neural Networks

    https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...

  6. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  7. MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性

    一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...

  8. ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)

      欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...

  9. MAGENTA: Meta-Analysis Gene-set Enrichment of variaNT Associations

    MAGENTA是一款计算工具,利用全基因组遗传数据,计算预先设定的涉及生物过程或者功能性基因集在遗传相关性的富集程度.开发的目的是分析基因型不是现成的数据集,比如大型的全基因组关联荟萃分析.在以下两种 ...

随机推荐

  1. iotop命令

    简介: iotop – simple top-like I/O monitor iotop是一个用来监视磁盘I/O使用状况的 top 类工具,可监测到哪一个程序使用的磁盘IO的信息(requires ...

  2. (转)Could not create the view: An unexpected exception was thrown. 电脑突然断电,myeclipse非正常关闭,出现错误

    问题:电脑突然断电,myeclipse非正常关闭,“Package Explorer”非正常显示,出现错误“Could not create the view: An unexpected excep ...

  3. PHP 用户登录与退出

    PHP 用户登录与退出 登录页面 login.html 负责收集用户填写的登录信息. <fieldset> <legend>用户登录</legend> <fo ...

  4. ubuntu 到底是选择32位还是64位?

     ubuntu 到底是选择32位还是64位? 2011-06-03 15:16:31 标签:ubuntu linux 休闲 cpu 职场 原文出处:官方wiki原文作者:授权许可: 创作共用协议Att ...

  5. Maven学习(五)-- 聚合与继承

    标签(空格分隔): 学习笔记 Maven的聚合特性能够把项目的各个模块聚合在一起构建: Maven的继承特性能够帮助抽取各模块相同的依赖和插件等配置,在简化POM的同时,还能够促进各个模块配置的一致性 ...

  6. [jetbrains系列] 外链第三方库+代码补全设置

    jetbrains系列的IDE真的是太好用了,有种相见恨晚的感觉. 在开发过程中第三方库是必不可少的,在开发的时候如果有一个可以补全的IDE可以节省查文档的时间. 举个例子:给pycharm配pysp ...

  7. [转] 浅谈Linux系统的启动流程

    原文:http://blog.csdn.net/justdb/article/details/9621271 版权声明:本文为博主原创文章. Linux系统的启动时通过读取不同的配置文件,执行相应的S ...

  8. android通过HttpClient与服务器JSON交互

    通过昨天对HttpClient的学习,今天封装了HttpClient类 代码如下: package com.tp.soft.util; import java.io.BufferedReader; i ...

  9. SVM学习(续)

    SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...

  10. C中的Float分析

    C/C++中, 浮点数,float以及 double 在内存中是怎样存储的? 假如,我有32-bit 8bit 8bit 8bit 0 0 0 0 0 1 1 1 1 对于整形int,我们可以很快得出 ...