False Discovery Rate, a intuitive explanation
【转载请注明出处】http://www.cnblogs.com/mashiqi
Today let's talk about a intuitive explanation of Benjamini-Hochberg Procedure. My teacher Can told me this explanation.
Suppose there are $M$ hypothesis:$$H_1,H_2,\cdots,H_M$$and corresponding $M$ p-values:$$p_1,p_2,\cdots,p_M$$Let's suppose $p_i$ are in ascending order: $p_1 \leq p_2 \leq \cdots \leq p_M$ for convenience. Now we want to let the FDR to be a positive scale, say $\alpha$, then what is the threshold value $p$ that can be used to reject hypotheses.
We know that the Benjamini-Hochberg Procedure is like this: let $k$ be the largest i for which $p_i \leq \frac{i}{M} \alpha$, then reject all $H_i,~i=1,2,\cdots,k$.
We wants to ask why this above gives the FDR at $\alpha$? Let's consider a probability $p$, the threshold value. If we reject all $H_i$ thich satisfy corresponding $p_i \leq p$, then the FDR is at $\alpha$. But how do we get the value of $p$? Let's take a look at the exact definition of False Discovery Rate:$$FDR = E[\frac{ \sharp\{falsely~say~significant\} }{\sharp\{say~significant\}}]$$
The $$\sharp\{say~significant\} = \sharp\{p_i \leq p\}$$. If the $H_i$ is null, then $p_i$ will be uniformly distributed,so $$\sharp\{falsely~say~significant\} = \pi_0 \times p \times M$$, where $\pi_0$ is the non-hypothesis probability. Then we get$$\frac{\pi_0 \times p \times M}{\sharp\{p_i \leq p\}}=\alpha$$
This gives a explanation.
False Discovery Rate, a intuitive explanation的更多相关文章
- 文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)
文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于 ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- An Intuitive Explanation of Fourier Theory
Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fo ...
- An Intuitive Explanation of Convolutional Neural Networks
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性
一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...
- ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)
欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...
- MAGENTA: Meta-Analysis Gene-set Enrichment of variaNT Associations
MAGENTA是一款计算工具,利用全基因组遗传数据,计算预先设定的涉及生物过程或者功能性基因集在遗传相关性的富集程度.开发的目的是分析基因型不是现成的数据集,比如大型的全基因组关联荟萃分析.在以下两种 ...
随机推荐
- [问题2014S03] 解答
[问题2014S03] 解答 设 \(A\) 的 \(n\) 个特征值分别为 \(\lambda_1,\lambda_2,\cdots,\lambda_n\), 由条件知它们都是不等于零的实数. 根 ...
- Python:C语言扩展
1. 概述 Python 可以非常方便地和 C 进行相互的调用. 一般,我们不会使用 C 去直接编写一个 Python 的模块.通常的情景是,我们需要把 C 的相关模块包装一下,然后在 Python ...
- [翻译]LSP程序的分类
翻译的太垃圾,不建议其它人阅读本文. Note:LSP现在已经不推荐使用.自windows8和windows Server2012开始,使用Windows Filtering Platform. Wi ...
- Java中ExecutorService和CompletionService区别
我们现在在Java中使用多线程通常不会直接用Thread对象了,而是会用到java.util.concurrent包下的ExecutorService类来初始化一个线程池供我们使用. 之前我一直习惯自 ...
- sublime text3 快捷方式汇总
sublime text. 用过的都给赞, 哈哈-- 下面是快捷方式汇总啦: 选择类: Ctrl+D 选中光标所占的文本,继续操作则会选中下一个相同的文本. Alt+F3 选中文本按下快捷键,即可一次 ...
- 【hdu5973】高精度威佐夫博弈
题意:输入a, b表示两堆石头数目,威佐夫博弈,问:先手胜负? a, b <= 1e100. 高精度.当a > b时, a = (a-b)*黄金分割比 时是先手败状态.因为a, b < ...
- js中对radio和checkbox是否选中的判断
一.js判断checkbox 例如:<div class="checkbox" style="width: 150px;"> <label&g ...
- 转!mysql 查询 distinct多个字段 注意!!
前几天做项目时,mysql写了个sql, distinct id,col1,col2,... 结果出来了多条同个ID的记录,百度了下..... 下面先来看看例子: table id name ...
- mysql查询结果导出到文件
方法一: 直接执行命令: mysql> select count(1) from table into outfile '/tmp/test.xls'; Query OK, 31 rows ...
- Sprint2-3.0
后续安排 第16周 周二晚7点之前将本代码上传到GITHUB. GITHUB地址:https://github.com/QueenIcey/teamwork/tree/master/eslife1 周 ...