Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 56958   Accepted: 16464

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates
started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they
were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know
that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1
,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

用线段树+离散化,用stl离散化似乎会超时。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
struct li{int x,y;}a[10001];
int n,ans,col[44001],tot[10001],s1[22001],s2[33001],n1,n2;
int bin(int k)
{
int l=1,r=n2;
while(l<=r){
int m=(l+r)>>1;
if(s2[m]==k) return m;
if(s2[m]<k) l=m+1;
else r=m-1;
}
return -1;
}
void pushdown(int k)
{
if(col[k]!=-1){
col[k<<1]=col[k<<1|1]=col[k];
col[k]=-1;
}
}
void update(int s,int t,int k,int wantl,int wantr,int p)
{
if(wantl<=s&&t<=wantr){
col[k]=p;
return ;
}pushdown(k);
int m=(s+t)>>1;
if(wantl<=m)update(s,m,k<<1,wantl,wantr,p);
if(wantr>m)update(m+1,t,k<<1|1,wantl,wantr,p);
}
void query(int s,int t,int k)
{
if(col[k]!=-1){
if(!tot[col[k]])ans++;
tot[col[k]]=1;
return ;
}
if(!(s^t))return ;
int m=(s+t)>>1;
query(s,m,k<<1);
query(m+1,t,k<<1|1);
}
int main()
{
int t;
scanf("%d",&t);
for(;t;t--){
scanf("%d",&n);
n1=0;
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i].x,&a[i].y);
s1[++n1]=a[i].x;
s1[++n1]=a[i].y;
}
sort(s1+1,s1+1+n1);
n2=0;
for(int i=1;i<=n1;i++)
if(s1[i-1]^s1[i])s2[++n2]=s1[i];
//for(int i=n2;i>=1;i--)
// if(s2[i]^(s2[i-1]+1))s2[++n2]=s2[i-1]+1;
//sort(s2+1,s2+1+n2);
memset(col,-1,sizeof(col));
for(int i=1;i<=n;i++){
a[i].x=bin(a[i].x);
a[i].y=bin(a[i].y);
update(1,n2,1,a[i].x,a[i].y,i);
}ans=0;
memset(tot,0,sizeof(tot));
query(1,n2,1);
printf("%d\n",ans);
}
return 0;
}

poj 2528的更多相关文章

  1. POJ 2528 Mayor's posters

    Mayor's posters Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  2. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  3. POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 59239   Accepted: 17157 ...

  4. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  5. poj 2528 (线段树+离散化)

    poj 2528 For each input data set print the number of visible posters after all the posters are place ...

  6. POJ - 2528 Mayor's posters(dfs+分治)

    POJ - 2528 Mayor's posters 思路:分治思想. 代码: #include<iostream> #include<cstdio> #include< ...

  7. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  8. POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】

    Mayor's posters Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  9. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  10. POJ 2528 Mayor's posters (线段树)

    题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...

随机推荐

  1. ArcGIS Server 10.1发布数据源为ArcSDE(直连)的MXD【转】

    因为ArcSDE10.1基本默认直连,所以我们在发布直连的MXD仍然需要注意相关的事宜. 1:保证两台机器都能够访问共享存储的信息 2:确保已UNC路径保存ArcCatalog的文件夹连接,而且直连的 ...

  2. 服务 {49A27252-A326-4EF1-B698-6EBC7068833C} 的计时器作业 id {573BE459-DF82-481C-84BD-CA14D287450B} 配置刷新的上一个实例仍在运行,因此将跳过当前的实例。请考虑增加作业之间的时间间隔。

    在SharePoint2007的错误日志中发现大量如下错误: 07/02/2013 16:17:25.99     OWSTIMER.EXE (0x0958)     0x097C    Window ...

  3. 在Android Stuido中使用Lint

    要运行Lint工具,大家首先需要在Android Studio的“Analyze”菜单中选择“Inspect Code…”.当Android Studio完成了对项目的检测之后,它会在窗口底部显示出分 ...

  4. Android读取自定义View属性

    Android读取自定义View属性 attrs.xml : <?xml version="1.0" encoding="utf-8"?> < ...

  5. symfony2 路由工作原理及配置

    1.路由是程序的方法和URL的一一映射.

  6. C#问题

    1.结构体里面是否可以有属性? 可以有属性.实测代码以及截图. In C#, we can use the following statement to convert a string s to a ...

  7. 世道变了 – 你愿意成为微软认证Linux工程师吗?

     随笔世道变了 – 你愿意成为微软认证Linux工程师吗? 世道变了 – 你愿意成为微软认证Linux工程师吗?  leixu十二月 14, 2015随笔 2015年12月9日,微软发布了全新的MCS ...

  8. 3、Javascript学习 - IT软件人员学习系列文章

    接下来,我们开始进入Javascript语言的学习. Javascript语言是一种解释性的语言,不同于ASP.NET.C#语言的这种编译性的语言.它随着HTML网页的发布而发布,就是说嵌入到HTML ...

  9. MongoDB 优点

    任何关系型数据库,具有典型的架构设计,显示表和这些表之间的关系.虽然在 MongoDB中,没有什么关系的概念. MongoDB比RDBMS的优势 架构:MongoDB是文档型数据库,其中一个集合保存不 ...

  10. phonegap学习笔记

    [windows下安装] 1 先安装node.js: http://nodejs.org/ 2 CMD下运行: C:\> npm install -g phonegap [创建项目] CMD下运 ...