In this post I’m going to help you understand how Kafka stores its data.

I’ve found understanding this useful when tuning Kafka’s performance and for context on what each broker configuration actually does. I was inspired by Kafka’s simplicity and used what I learned to start implementing Kafka in Golang.

So how does Kafka’s storage internals work?

Kafka’s storage unit is a partition

A partition is an ordered, immutable sequence of messages that are appended to. A partition cannot be split across multiple brokers or even multiple disks.

 

The retention policy governs how Kafka retains messages

You specify how much data or how long data should be retained, after which Kafka purges messages in-order—regardless of whether the message has been consumed.

Partitions are split into segments

So Kafka needs to regularly find the messages on disk that need purged. With a single very long file of a partition’s messages, this operation is slow and error prone. To fix that (and other problems we’ll see), the partition is split into segments.

When Kafka writes to a partition, it writes to a segment — the active segment. If the segment’s size limit is reached, a new segment is opened and that becomes the new active segment.

Segments are named by their base offset. The base offset of a segment is an offset greater than offsets in previous segments and less than or equal to offsets in that segment.

 

On disk a partition is a directory and each segment is an index file and a log file.

$ tree kafka | head -n 6
kafka
├── events-1
│ ├── 00000000003064504069.index
│ ├── 00000000003064504069.log
│ ├── 00000000003065011416.index
│ ├── 00000000003065011416.log

Segments logs are where messages are stored

Each message is its value, offset, timestamp, key, message size, compression codec, checksum, and version of the message format.

The data format on disk is exactly the same as what the broker receives from the producer over the network and sends to its consumers. This allows Kafka to efficiently transfer data with zero copy.

$ bin/kafka-run-class.sh kafka.tools.DumpLogSegments --deep-iteration --print-data-log --files /data/kafka/events-1/00000000003065011416.log | head -n 4
Dumping /data/kafka/appusers-1/00000000003065011416.log
Starting offset: 3065011416
offset: 3065011416 position: 0 isvalid: true payloadsize: 2820 magic: 1 compresscodec: NoCompressionCodec crc: 811055132 payload: {"name": "Travis", msg: "Hey, what's up?"}
offset: 3065011417 position: 1779 isvalid: true payloadsize: 2244 magic: 1 compresscodec: NoCompressionCodec crc: 151590202 payload: {"name": "Wale", msg: "Starving."}

Segment indexes map message offsets to their position in the log

The segment index maps offsets to their message’s position in the segment log.

 

The index file is memory mapped, and the offset look up uses binary search to find the nearest offset less than or equal to the target offset.

The index file is made up of 8 byte entries, 4 bytes to store the offset relative to the base offset and 4 bytes to store the position. The offset is relative to the base offset so that only 4 bytes is needed to store the offset. For example: let’s say the base offset is 10000000000000000000, rather than having to store subsequent offsets 10000000000000000001 and 10000000000000000002 they are just 1 and 2.

Kafka wraps compressed messages together

Producers sending compressed messages will compress the batch together and send it as the payload of a wrapped message. And as before, the data on disk is exactly the same as what the broker receives from the producer over the network and sends to its consumers.

 

Let’s Review

Now you know how Kafka storage internals work:

  • Partitions are Kafka’s storage unit
  • Partitions are split into segments
  • Segments are two files: its log and index
  • Indexes map each offset to their message’s position in the log, they’re used to look up messages
  • Indexes store offsets relative to its segment’s base offset
  • Compressed message batches are wrapped together as the payload of a wrapper message
  • The data stored on disk is the same as what the broker receives from the producer over the network and sends to its consumers

Implementing Kafka in Golang

I’m writing an implementation of Kafka in Golang, Jocko. So far I’ve implemented reading and writing to segments on a single broker and am working on making it distributed. Follow along and give me a hand.

How Kafka’s Storage Internals Work的更多相关文章

  1. Error when sending message to topic test with key: null, value: 2 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)

    windows下使用kafka遇到这个问题: Error when sending message to topic test with key: null, value: 2 bytes with ...

  2. Kafka遇到30042ms has passed since batch creation plus linger time at org.apache.kafka.clients.producer.internals.FutureRecordMetadata.valueOrError(FutureRecordMetadata.java:94)

    问题描述: 运行生产者线程的时候显示如下错误信息: Expiring 1 record(s) for XXX-0: 30042 ms has passed since batch creation p ...

  3. Kafka Offset Storage

    1.概述 目前,Kafka 官网最新版[0.10.1.1],已默认将消费的 offset 迁入到了 Kafka 一个名为 __consumer_offsets 的Topic中.其实,早在 0.8.2. ...

  4. 《Pro SQL Server Internals, 2nd edition》的CHAPTER 1 Data Storage Internals中的Data Pages and Data Rows(翻译)

    数据页和数据行 数据库中的空间被划分为逻辑8KB的页面.这些页面是以0开始的连续编号,并且可以通过指定文件ID和页号来引用它们.页面编号都是连续的,这样当SQL Server增长数据库文件时,从文件中 ...

  5. Kafka Internals: Consumers

    Check out my last article, Kafka Internals: Topics and Partitions to learn about Kafka storage inter ...

  6. kafka学习指南(总结版)

    版本介绍 从使用上来看,以0.9为分界线,0.9开始不再区分高级/低级消费者API. 从兼容性上来看,以0.8.x为分界线,0.8.x不兼容以前的版本. 总体拓扑架构 从上可知: 1.生产者不需要访问 ...

  7. Kafka官方文档V2.7

    1.开始 1.1 简介 什么是事件流? 事件流相当于人体的中枢神经系统的数字化.它是 "永远在线 "世界的技术基础,在这个世界里,业务越来越多地被软件定义和自动化,软件的用户更是软 ...

  8. Kafka 消费者解析

    一.消费者相关概念 1.1 消费组&消费者 消费者: 消费者从订阅的主题消费消息,消费消息的偏移量保存在Kafka的名字是__consumer_offsets的主题中 消费者还可以将⾃⼰的偏移 ...

  9. Kafka 0.9+Zookeeper3.4.6集群搭建、配置,新Client API的使用要点,高可用性测试,以及各种坑 (转载)

    Kafka 0.9版本对java client的api做出了较大调整,本文主要总结了Kafka 0.9在集群搭建.高可用性.新API方面的相关过程和细节,以及本人在安装调试过程中踩出的各种坑. 关于K ...

随机推荐

  1. 18. javacript高级程序设计-JavaScript与XML

    1. JavaScript与XML IE采取了下列方式: l 通过ActiveX对象来支持处理XML,而相同的对象也可以用来构建桌面应用程序 l Windows携带了MSXML库,JavaScript ...

  2. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  3. 8.SpringMVC参数传递

    页面参数传递到controller, 可被同名(与页面标签上的name名对应)的参数接收,用request设值,页面再取出来. 注意乱码解决办法: ①如果是get提交,则在tomcat的server. ...

  4. XP共享连接数限制

  5. Effective C++ -----条款34:区分接口继承和实现继承

    接口继承和实现继承不同.在public继承之下,derived classes总是继承base class的接口. pure virtual函数只具体指定接口继承. 简朴的(非纯)impure vir ...

  6. 我刚知道的WAP app中meta的属性(转载)

    之前我一直做的都是WEB前端开发,来北京以后面试了一个移动前端开发,WAP前端开发. 其实在原来公司的时候也做过这方面的开发,可面试的时候面试官问我,要想强制让文档与设备的宽度保持1:1,mate标签 ...

  7. HDU 5881 Tea -2016 ICPC 青岛赛区网络赛

    题目链接 题意:有一壶水, 体积在 L和 R之间, 有两个杯子, 你要把水倒到两个杯子里面, 使得杯子水体积几乎相同(体积的差值小于等于1), 并且使得壶里剩下水体积不大于1. 你无法测量壶里剩下水的 ...

  8. Jams倒酒

    Jams是一家酒吧的老板,他的酒吧提供2种体积的啤酒,a ml 和 b ml,分别使用容积为a ml 和 b ml的酒杯来装载. 酒吧的生意并不好.Jams发现酒鬼们都很穷,不像他那么土豪.有时,他们 ...

  9. 【转】C++多态性

    ----转自http://blog.csdn.net/hackbuteer1/article/details/7475622 C++编程语言是一款应用广泛,支持多种程序设计的计算机编程语言.我们今天就 ...

  10. 修改searchbar 取消 字体 颜色

    UIButton *cancelButton; UIView *topView = self.searchDisplayController.searchBar.subviews[]; for (UI ...