PDF version

PMF

Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called "success" and "failure". In each trial the probability of success is $p$ and of failure is $(1-p)$. We are observing this sequence until a predefined number $r$ of failures has occurred. Then the random number of successes we have seen, $X$, will have the negative binomial (or Pascal) distribution: $$f(x; r, p) = \Pr(X=x) = {x + r-1\choose x}p^{x}(1-p)^{r}$$ for $x = 0, 1, 2, \cdots$.

Proof:

$$ \begin{align*} \sum_{x =0}^{\infty}P(X = x) &= \sum_{x= 0}^{\infty} {x + r-1\choose x}p^{x}(1-p)^{r}\\ &= (1-p)^{r}\sum_{x=0}^{\infty} (-1)^{x}{-r\choose x}p^{x}\;\;\quad\quad (\mbox{identity}\ (-1)^{x}{-r\choose x}= {x+r-1\choose x})\\ &= (1-p)^r(1-p)^{-r}\;\;\quad\quad\quad\quad\quad\quad (\mbox{binomial theorem})\\ &= 1 \end{align*} $$ Using the identity $(-1)^{x}{-r\choose x}= {x+r-1\choose x}$: $$ \begin{align*} {x+r-1\choose x} &= {(x+r-1)!\over x!(r-1)!}\\ &= {(x+r-1)(x+r-2) \cdots r\over x!}\\ &= (-1)^{x}{(-r-(x-1))(-r-(x-2))\cdots(-r)\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))\over x!}\\ &= (-1)^{x}{(-r)(-r-1)\cdots(-r-(x-1))(-r-x)!\over x!(-r-x)!}\\ &=(-1)^{x}{-r\choose x} \end{align*} $$

Mean

The expected value is $$\mu = E[X] = {rp\over 1-p}$$

Proof:

$$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}xf(x; r, p)\\ &= \sum_{x=0}^{\infty}x{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}r{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad \mbox{setting}\ y= x-1\\ &= {rp\over 1-p} \end{align*} $$ where the last summation follows $Y\sim\mbox{NB}(r+1; p)$.

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = {rp\over(1-p)^2}$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2f(x; r, p)\\ &= \sum_{x=0}^{\infty}x^2{x + r-1\choose x}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}x{(x+r-1)!\over(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &=\sum_{x=1}^{\infty}rx{(x+r-1)!\over r(r-1)!(x-1)!}p^{x}(1-p)^{r}\\ &= {rp\over 1-p}\sum_{x=1}^{\infty}x{x + r-1\choose x-1}p^{x-1}(1-p)^{r+1}\\ &={rp\over 1-p}\sum_{y=0}^{\infty}(y+1){y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}\quad\quad\quad (\mbox{setting}\ y= x-1)\\ &= {rp\over 1-p}\left(\sum_{y=0}^{\infty}y{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1}+\sum_{y=0}^{\infty}{y+(r+1)-1\choose y}p^{y}(1-p)^{r+1} \right)\\ &= {rp\over 1-p}\left({(r+1)p\over 1-p} + 1\right)\quad\quad\quad\quad\quad\quad(Y\sim\mbox{NB}(r+1; p),\ E[Y] = {(r+1)p\over1-p})\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p} \end{align*} $$ Thus the variance is $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {rp\over 1-p}\cdot{rp+1\over 1-p}- \left({rp\over 1-p}\right)^2\\ &= {rp\over 1-p}\left({rp+1\over 1-p} - {rp\over 1-p}\right)\\ &= {rp\over(1-p)^2} \end{align*} $$

Examples

1. Find the expected value and the variance of the number of times one must throw a die until the outcome 1 has occurred 4 times.

Solution:

Let $X$ be the number of times and $Y$ be the number of success in the trials. Obviously, we have $X = Y+4$. Then the problem can be rewritten as ``the expected value and the variance of the number of times one must throw a die until the outcome 1 has NOT occurred 4 times''. That is, $r = 4$, $p = {5\over 6}$ and $Y\sim\mbox{NB}(r; p)$. Thus $$E[X] = E[Y+4]= E[Y] + 4 = {rp\over 1-p}+4 = 24$$ $$\mbox{Var}(X) = \mbox{Var}(Y+4) = \mbox{Var}(Y) = {rp\over(1-p)^2}= 120$$

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Chen, H. Advanced Statistical Inference. Class Notes. PDF

基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  2. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  3. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  4. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  5. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  6. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  7. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. 一道经典JS题(关于this)

    项目中碰到的问题,以前也碰到过,没有重视,现记录如下. <input type='button' value='click me' id='btn' /> <script> v ...

  2. ASP.NET Web API 实现客户端Basic(基本)认证 之简单实现

    优点是逻辑简单明了.设置简单. 缺点显而易见,即使是BASE64后也是可见的明文,很容易被破解.非法利用,使用HTTPS是一个解决方案. 还有就是HTTP是无状态的,同一客户端每次都需要验证. 实现: ...

  3. go-- 用go-mssql驱动连接sqlserver数据库

    import _ "github.com/denisenkom/go-mssqldb" import ( "crypto/cipher" "crypt ...

  4. [转]Java使用commons-dbcp2.0

    原文地址:http://blog.csdn.net/jiutianhe/article/details/39670817 dbcp 是 apache 上的一个 java 连接池项目,也是 tomcat ...

  5. 【UOJ #150】【NOIP 2015】运输计划

    http://uoj.ac/problem/150 用树链剖分求lca,二分答案树上差分判断. 时间复杂度$O(nlogn)$,n,m同阶. #include<cstdio> #inclu ...

  6. 【BZOJ 1568】【JSOI 2008】Blue Mary开公司

    经典的splay维护凸壳,但是看了看zky学长的题解最后决定写线段树维护标记永久化. Round1考到了这个之后一直没有理解标记永久化,CTSC也因为自己的缺陷丢掉了一些部分分,so sad 看来以后 ...

  7. 【BZOJ 3053】The Closest M Points

    KDTree模板,在m维空间中找最近的k个点,用的是欧几里德距离. 理解了好久,昨晚始终不明白那些“估价函数”,后来才知道分情况讨论,≤k还是=k,在当前这一维度距离过线还是不过线,过线则要继续搜索另 ...

  8. 【BZOJ 4518】【SDOI 2016 Round1 Day2 T3】征途

    比较明显的斜率优化DP,省选时因为时间太紧张和斜率DP写得不熟等原因只写了60分的暴力DP,其实当时完全可以对拍来检验标算的正确,但是我当时too naive- 很快打完了,调了将近一晚上QAQ,因为 ...

  9. ES6新特性:let和const的使用

    (声明, 本文的所有代码均在node的最新稳定版本v4.4.3中执行的, 如果在浏览器中执行请把JS的运行环境提升为ES6) 以前一直用var定义变量, 现在有了两种新的定义变量的方式, 1: let ...

  10. mysql解决无法远程客户端连接

    1. 改表法.可能是你的帐号不允许从远程登陆,只能在localhost.这个时候只要在localhost的那台电脑,登入mysql后,更改 "mysql" 数据库里的 " ...