Part 1: Moments

Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is

\[\mu_{n}^{'} = EX^n.\]

The nth central moment of $X$, $\mu_n$, is

\[ \mu_n = E(X-\mu)^n,\]

where $\mu=\mu_{1}^{'}=EX$.

Definition 2 The variance of a random variable $X$ $= Var X = E(X-EX)^2$.

The standard deviation of $X$ $=  \sqrt{Var X}$.

Part 2: Moment Generating Function (mgf)

The mgf can be used to generate moments. In practice, it is easier to compute moments directly than to use the mgf. However, the main use of the mgf is to help in characterizing a distribution.

Defintion 3 Let $X$ be a random variable with cdf $F_X$. The moment generating function (mgf) of $X$, denoted by $M_X(t)$, is

\[M_{X}(t) = E e^{tX}, \]

provided that the expectation exists for $t$ in some neighborhood of $0$. If the expectation does not exist in a neighborhood of $0$, we say that the moment generating function does not exist.

Theorem 4 (mgf generates moments)

If $X$ has mgf $M_X(t)$, then

\[E X^{n} = M_{X}^{(n)}(0),\]

where we define

\[M_{X}^{(n)}(0) = \frac{d^n}{d t^{n}}M_X(t) |_{t=0}.\]

That is, the nth moment is equal to the nth derivative of $M_X(t)$ evaluated at $t=0$.

Remark 5 If the mgf exists, it characterizes an infinite set of moments. However, the infinite set of moments does not uniquely determine a distribution function. If we pose some condition on the random variable, say it has bounded support, then it is true that the inifinite set of moments uniquely determine a distribution function.

Remark 6 Existence of all moments is not equivalent to existence of the moment generating function. Actually, if the mgf exists in a neighborhood of 0, then the distribution is uniquely determined. An analogue is the analytic function in a neighborhood and the existence of derivatives of all orders.

Theorem 7 

Let $F_X(t)$ and $F_Y(t)$ be two cdfs all of whose moments exist.

a. If $X$ and $Y$ have bounded support, then $F_X(u)=F_Y(u)$ for all $u$ if and only if $E X^{r} = E Y^{r}$ for all integers $r = 0, 1, 2, \cdots$

b. If the moment generating functions exist and $M_X(t) = M_Y(t)$ for all $t$ in some neighborhood of $0$, then $F_X(u) = F_Y(u)$ for all u.

Theorem 8 

Suppose $\{X_i\}, \quad i=1,2,3,\cdots$ is a sequence of random variables, each with mgf $M_{X_i}(t)$.

Furthermore, suppose that

\[\lim_{i\to \infty}M_{X_{i}}(t) = M_{X}(t), \]

for all $t$ in a neighborhood of 0, and $M_X(t)$  is an mgf.

Then there is a unique cdf $F_X$ whose moments are determined by $M_X(t)$ and , for all $x$ where $F_X(t)$ is continuous, we have

\[\lim_{i\to \infty}F_{X_{i}}(x) = F_{X}(x).\]

That is, convergence, for $|t|<h$, of mgfs to an mgf implies convergence of cdfs.

读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)的更多相关文章

  1. TJI读书笔记15-持有对象

    TJI读书笔记15-持有对象 总览 类型安全和泛型 Collection接口 添加元素 List 迭代器 LinkedList 栈 Set Map Queue Collection和Iterator ...

  2. 《Troubleshooting SQL Server》读书笔记-CPU使用率过高(下)

    <Troubleshooting SQL Server>读书笔记-CPU使用率过高(下) 第三章 High CPU Utilization. CPU使用率过高的常见原因 查询优化器会尽量从 ...

  3. 《Mastering Opencv ...读书笔记系列》车牌识别(II)

    http://blog.csdn.net/jinshengtao/article/details/17954427   <Mastering Opencv ...读书笔记系列>车牌识别(I ...

  4. 《Java编程思想》读书笔记(二)

    三年之前就买了<Java编程思想>这本书,但是到现在为止都还没有好好看过这本书,这次希望能够坚持通读完整本书并整理好自己的读书笔记,上一篇文章是记录的第一章到第十章的内容,这一次记录的是第 ...

  5. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  6. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  7. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  8. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  9. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

随机推荐

  1. Ajax Post 与 Get 实例

    Ajax的POST实例,index.html <html> <head> <script type="text/javascript"> fun ...

  2. EmguCV 如何从数组中创建出IntPtr

    需要添加引用:System.Runtime.InteropServices 举例如下: float[] priors={1,10}; IntPtr intPtrSet = new IntPtr(); ...

  3. Spark on YARN两种运行模式介绍

    本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发)   问题导读 1.Spark ...

  4. JavaMail邮件开发

    一.只带有纯文本的邮件 代码事例如下: package com.lyh.sendemail; import java.util.Properties; import javax.mail.Messag ...

  5. PHP环境下Memcache的使用方法

    原文:PHP环境下Memcache的使用方法 原文地址:http://www.2cto.com/kf/201503/384967.html 如今互联网崛起的时代,各大网站都面临着一个大数据流问题,怎么 ...

  6. 在C#中获取如PHP函数time()一样的时间戳

    原文:在C#中获取如PHP函数time()一样的时间戳 c#中没有象PHP一样的time()时间戳函数,但有DateTime.Now.Ticks用来计算时间差. 此属性的值为自 0001 年 1 月 ...

  7. vim - Simple commands to remove unwanted whitespace

    http://vim.wikia.com/wiki/Remove_unwanted_spaces 1. manual commandremove trailing whitespace::%s/\s\ ...

  8. 用"僵尸对象"调试内存管理问题

    Cocoa提供了"僵尸对象"(Zombie Object)这个功能.启用这项调试功能之后,运行时系统会把所有已经回收的实例转化成特殊的"僵尸对象",而不会真正回 ...

  9. python - 文件迭代

    >>> f=open('passwd','r')>>> for lines in f:... print lines >>> f=open('pa ...

  10. Java基础之扩展GUI——使用对话框创建文本元素(Sketcher 4 creating text elements)

    控制台程序. 为了与Sketcher中的其他元素类型保持一致,需要为Elements菜单添加Text菜单项和工具栏按钮.还需要定义用来表示文本元素的类Element.Text. 1.修改Sketche ...