[Machine-Learning] 机器学习中的几个度量指标
Several classification metrics for ML/DM methods.
主要解释下机器学习(或数据挖掘)中的几个度量指标。
1. 关于 "TN/TP/FN/FP"
在预测过程中,经常会出现这几个名词,先是解释下字面意思:
- TN: True Negative (真负),被模型预测为负的样本,模型预测对了
- TP: True Positive (真正),被模型预测为正的样本,模型预测对了
- FN: False Negative (假负),被模型预测为负的样本,模型预测错了
- FP: False Positive (假正),被模型预测为正的样本,模型预测错了
可以看出来,两个字母的后面一个字母(N or P ),是模型预测的结果,而第一个字母(T or N ) 代表的是这个结果的正确与否;下面用一个表格来表示一下:
Actual Class: X | Actual Class: not X | |
---|---|---|
Predicted Class: X | TP | FP |
Predicted Class: not X | FN | TN |
Table.1: BINARY CONFUSION MATRIX
从上面这个表格中也能比较直观地分辨这4个指标:横轴代表结果实际的情况,而纵轴代表了该例子被模型预测的情况。
2. 常用于二分类问题(监督学习)的度量指标
2.1 准确率 or 正确比例:
Accuracy or Proportion Correct
计算方法:(TN + TP) / (TP + TN + FP + FN)
需要注意的是:当分类问题是平衡(blanced)的时候,准确率可以较好地反映模型的优劣程度,但不适用于数据集不平衡的时候。
例如:分类问题的数据集中本来就有97% 示例是属于X,只有另外3%不属于X,所有示例都被分类成X的时候,准确率仍然高达97%,但这没有任何意义。
2.2 PPV or 正预测值:
PPV = Positive Predictive Value 。
计算方法:TP / ( TP + FP )
模型预测属于X的示例(instance)中,预测正确(真正属于X)的比例。
2.3 召回率 or TP Rate:
Sensitivity(灵敏度) orRecall or True Positive Rate or Probability。
计算方法: TP / (TP + FN)
真正属于X的示例中,成功预测为属于X(TP)的比例。
2.4 NPV or 错误预测正确率:
NPV = Negative Predictive Value
计算方法:TN / (TN + FN)
模型预测不属于X的示例中,预测正确(TN)的比例;那个中文是我自己翻译的,凑活看吧。。。这个和PPV比较像。
2.5 TN Rate:
Specificity or True Negative Rate
计算方法:TN / (TN + FP)
真正不属于X的示例中,被预测成不属于X的示例所占的比例。(已经无力翻译成中文名称了。。。)
2.6 FP rate or FAR or Fall-out:
FAR = 1-Specificity
计算方法:FP / (TN + FP)
真正不属于X的示例中,模型预测成属于X的(预测失败)示例所占的比例。
在分类问题中,在灵敏度和FAR两者之间要保持一个平衡(折中)。这种折中要通过ROC曲线来表示,在Y轴上表示灵敏度,在X轴上表示FAR。 较高的FAR导致较高的灵敏度,较低的FAR导致较低的灵敏度。 通常,FAR不能高于某个数,这就是最终分类器的选择。
3. 多分类问题中的度量指标
- Overall Accuracy:被正确分类的示例在数据集中的比例。
- Class detection rate:来自给定类的例子正确地分类占来自给定类的所有样本得比例。
- Class FAR or class FP rate:一个类别中分类错误(未被分到这个类)的示例占所有不是这个类的示例的比例。
在多分类问题中计算PPV和NPV是可行的,但是通常不这么做
reference
- Anna L. Buczak, Erhan Guven, "A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection", IEEE COMMUNICATIONS SURVEYS & TUTORIALS VOL. 18, NO. 2, SECOND QUARTER 2016
[Machine-Learning] 机器学习中的几个度量指标的更多相关文章
- Machine learning | 机器学习中的范数正则化
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...
- Portal:Machine learning机器学习:门户
Machine learning Machine learning is a scientific discipline that explores the construction and stud ...
- [原创]Machine Learning/机器学习 文章合集
转载请注明出处:https://www.codelast.com/ ➤ 用人话解释机器学习中的Logistic Regression(逻辑回归) ➤ 如何防止softmax函数上溢出(overflow ...
- machine learning----->Amazon Machine Learning机器学习平台
参考资料: 1.如何使用Amazon Machine Learning平台构建你的机器学习预测模型 2.
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...
- Machine Learning:机器学习算法
原文链接:https://riboseyim.github.io/2018/02/10/Machine-Learning-Algorithms/ 摘要 机器学习算法分类:监督学习.半监督学习.无监督学 ...
- Data Leakage in Machine Learning 机器学习训练中的数据泄漏
refer to: https://www.kaggle.com/dansbecker/data-leakage There are two main types of leakage: Leaky ...
- [Machine Learning] 机器学习常见算法分类汇总
声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...
- 【Machine Learning·机器学习】决策树之ID3算法(Iterative Dichotomiser 3)
目录 1.什么是决策树 2.如何构造一棵决策树? 2.1.基本方法 2.2.评价标准是什么/如何量化评价一个特征的好坏? 2.3.信息熵.信息增益的计算 2.4.决策树构建方法 3.算法总结 @ 1. ...
随机推荐
- 【HDU4419 Colourful Rectangle】 线段树面积并
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4419 题目大意:给你n个矩形,每个矩形都有一种颜色,矩形覆盖会出现另外一种颜色,问你所有矩形中不同的颜 ...
- 可以使用mysql自己带的config edit
正常情况下,一般数据库密码可以写在用户主目录的.my.cnf 然后设置chmod 600,一般来说是比较安全的. 但是如果不想给人知道用户名和实际的密码,但是又想给人用,可以使用mysql自己带的co ...
- IOS第七天(6:UiTableView编辑模式, 拖动位置 ,滑动删除)
**********UiTableView编辑模式, 拖动位置 ,滑动删除 #import "HMViewController.h" @interface HMViewContro ...
- php解析一个url
$url = "http://shopnc.localhost/shop/index.php?act=goods&op=index&goods_id=25220"; ...
- SaveData Functions
Here are some save function for some situations: Yes/No /// <summary> ///保存数据到WCF /// </sum ...
- Java简单类(部门、领导、雇员关系)
class Dept { private int deptno ; private String dname ; private String loc ; private Emp emps [] ; ...
- SQLite核心函数一览
abs(X) abs(X)返回 X 的绝对值. Abs(X) returns NULL if X is NULL. Abs(X) return 0.0 if X is a string or blo ...
- LINUX VI 常用命令
vi 打开或新建 vi filename 打开或新建文件 并将光标置于第一行首 光标 ) 光标移至句尾 ( 光标移至句首 屏幕翻滚类命令 Ctrl+u 向文件首翻半屏 Ctrl+d 向文件尾翻半屏 ...
- http://blog.csdn.net/ClementAD/article/category/6217187/2
http://blog.csdn.net/ClementAD/article/category/6217187/2
- sql 里 text类型的操作(转载)
SQL Server中TEXT类型字段值在数据库中追加字符串方法 对text类型字段值进行追加更新的操作,一开始用了简单的update语句试了试,有错误,原来text.ntext类型的字段不能和 va ...