Description

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。

Input

输入包含多组数据。

第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

Output

对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

Sample Input

【样例输入1】
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,为质数,1<=T<=10。

Sample Output

【样例输出1】
2
1
2
【样例输出2】
2
1
0

HINT

 

Source

Solution:第一问快速幂
      第二问EXGCD
      第三问BSGS
BSGS(Baby Step Giant Step)网上介绍的很详细了,但是我令x=im-j这样就不用求逆元辣,相应的为了不出现负数是i从1开始到m枚举,则j从1到m枚举,因为可以等于m,j就不需要从0开始啦.。
另:一开始在CV上测,用了puts试试,忘了自带换行在CV上过了,然而在BZOJ PE了233
 #include <iostream>
#include <cstdio>
#include <cmath>
#include <map>
#define ll long long
using namespace std;
ll y,z,p; ll fast_pow(ll y,ll z,ll p)
{
ll ans=;
while (z)
{
if (z&) ans=ans*y%p;
y=y*y%p;
z>>=;
}
return ans;
} ll gcd(ll a,ll b)
{return b==?a:gcd(b,a%b);} void ex_gcd(ll a,ll b,ll &x,ll &y)
{
if (!b) {x=;y=;return;}
ex_gcd(b,a%b,x,y);
ll t=x; x=y; y=t-a/b*y;
} void solve1()
{
printf("%lld\n",fast_pow(y,z,p));
} void solve2()
{
ll d=gcd(y,p);
if (z%d) {printf("Orz, I cannot find x!\n");return;}
y/=d; z/=d;
ll a,b;
ex_gcd(y,p,a,b);
a=a*z%p;
while (a<) a+=p;
printf("%lld\n",a);
} void solve3()
{
y%=p,z%=p;
if (!y && !z) {puts(""); return;}
if (!y) {printf("Orz, I cannot find x!\n");return;}
map<ll,ll> mp;
mp.clear();
ll m=ceil(sqrt(p));
ll t=fast_pow(y,m,p),k=z%p;//直接m即可
for (int i=;i<m;i++)
{
if (!mp[k]) if (i) mp[k]=i;//注意变量,及时订正。
else mp[k]=-;
k=k*y%p;
}
k=;
for (int i=;i<m;i++)
{
if (mp[k])//注意!mp与mp的判断
{
if (mp[k]==-) mp[k]=;
printf("%lld\n",i*m-mp[k]);
return;
}
k=k*t%p;
}
printf("Orz, I cannot find x!\n");//各种傻
} int main()
{
int T,t;
scanf("%d%d",&T,&t);
while (T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if (t==) solve1();
if (t==) solve2();
if (t==) solve3();
}
}

【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS的更多相关文章

  1. BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...

  2. bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS

    1:快速幂  2:exgcd  3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...

  3. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  4. BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]

    2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...

  5. BZOJ2242 [SDOI2011]计算器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  7. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  8. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  9. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

随机推荐

  1. test1.A[【dfs简单题】

    Test1.A Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 sdut 2274:http://acm.sdut.edu.cn/ ...

  2. 新手上路之Hibernate:第一个Hibernate例子

    一.Hibernate概述 (一)什么是Hibernate? Hibernate核心内容是ORM(关系对象模型).可以将对象自动的生成数据库中的信息,使得开发更加的面向对象.这样作为程序员就可以使用面 ...

  3. hdu 1247:Hat’s Words(字典树,经典题)

    Hat’s Words Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. Datagard產生gap

    本文轉載自無雙的小寶的博客:http://www.cnblogs.com/sopost/archive/2010/09/11/2190085.html 有時候因為網路或備份故障等原因,主機所產生的歸檔 ...

  5. Mysql常用命令详解

    Mysql安装目录 数据库目录 /var/lib/mysql/ 配置文件 /usr/share/mysql(mysql.server命令及配置文件) 相关命令 /usr/bin(mysqladmin ...

  6. [Eclipse] Eclipse配置Tomcat插件

    1 . Eclipse IDE 3.6 for Java EE Developersat- 5.5.28 或者以上版本 : 2 . 安装 Tomcat 插件 , 文件名: tomcatPluginV3 ...

  7. Zigzag convert

    public static String Convert(String s,int row) { char[] c=s.toCharArray(); int len=s.length(); Strin ...

  8. loj 1429(可相交的最小路径覆盖)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1429 思路:这道题还是比较麻烦的,对于求有向图的可相交的最小路径覆盖,首先要解决成环问 ...

  9. ios广告

    ios广告只需要添加iAd.framework框架 添加广告控件ADBannerView,在控制器中设置广告控件代理<ADBannerViewDelegate>即可,广告会有苹果官方自动推 ...

  10. T-SQL 基础编程

    Ø Go批处理语句 用于同时执行多个语句 Ø 使用.切换数据库 use master go Ø 创建.删除数据库 方法1. --判断是否存在该数据库,存在就删除 if (exists (select ...