彻底弄明白之数据结构中的KMP算法
Knuth–Morris–Pratt string search algorithm
Start at LHS of string, string[0], trying to match pattern, working right.
Trying to match string[i] == pattern[j].
How to build the table
Everything else below is just how to build the table.
Construct a table showing where to reset j to
- If mismatch string[i] != pattern[0], just move string to i+1, j = 0
- If mismatch string[i] != pattern[1], we leave i the same, j = 0
pattern = 10
string = ... 1100000 - If mismatch string[i] != pattern[2], we leave i the same, and change j, but we need to consider repeats in pattern[0] .. pattern[1]
pattern = 110
string = ... 11100000
i stays same, j goes from 2 back to 1pattern = 100
string = ... 10100000
i stays same, j goes from 2 back to 0 - If mismatch string[i] != pattern[j], we leave i the same, and change j, but we need to consider repeats in pattern[0] .. pattern[j-1]
Given a certain pattern, construct a table showing where to reset j to.
Construct a table of next[j]
For each j, figure out:
next[j] = length of longest prefix in "pattern[0] .. pattern[j-1]" that matches the suffix of "pattern[1] .. pattern[j]”
That is:
- prefix must include pattern[0]
- suffix must include pattern[j]
- prefix and suffix are different
next[j] = length of longest prefix in "pattern[0] .. pattern[j-1]" that matches the suffix of "pattern[1] .. pattern[j]”
当j+1位与s[k]位比较,不匹配时
j'=next[j], j’和s[k]比较了,j’移到了原j+1的位置
j | 0 | 1 | 2 | 3 | 4 | 5 |
substring 0 to j | A | AB | ABA | ABAB | ABABA | ABABAC |
longest prefix-suffix match | none | none | A | AB | ABA | none |
next[j] | 0 | 0 | 1 | 2 | 3 | 0 |
notes | no prefix and suffix that are different i.e. next[0]=0 for all patterns |
Given j, let n = next[j]
"pattern[0] .. pattern[n-1]" = "pattern[j-(n-1)] .. pattern[j]"
"pattern[0] .. pattern[next[j]-1]" = "pattern[j-(next[j]-1)] .. pattern[j]"
e.g. j = 4, n = 3,
"pattern[0] .. pattern[2]" = "pattern[2] .. pattern[4]"
If match fails at position j+1(compare with s[j+1]), keep i same, reset pattern to position n(next[j]).
Have already matched pattern[0] .. pattern[n-1], pattern[0] .. pattern[n-1]=pattern[1] .. pattern[n]
e.g. We have matched ABABA so far.
If next one fails, say we have matched ABA so far and then see if next one matches.
That is, keep i same, just reset j to 3 (= precisely length of longest prefix-suffix match)
Then, if match after ABA fails too, by the same rule we say we have matched A so far, reset to j = 1, and try again from there.
In other words, it starts by trying to match the longest prefix-suffix, but if that fails it works down to the shorter ones until exhausted (no prefix-suffix matches left).
Algorithm to construct table of next[j]
pattern[0] ... pattern[m-1]
Here, i and j both index pattern.
![](https://images0.cnblogs.com/blog/337428/201403/090010487532547.png)
next[0] = 0 i = 1 // on 1 step i=1,j=0 // 比如[0],[1],[2] === [4],[5][6] // 这时 [3] <> [7] //maybe there is another pattern we can shift right though,就是前缀和后缀 j = next[j-1] // 因为next[j]就是给j+1用的,这个可记为定律,并且用j-1的原因还有0到[j-1]才有前后缀匹配的概念, // j是没有和模式串中的前缀匹配的,画画图就知道了 } // 模式串的下标为0时,与文本串s的下标i的值不匹配,i右移一位,模式串右移一位,0右移还是0 next[i] = 0 |
彻底弄明白之数据结构中的KMP算法的更多相关文章
- 彻底弄明白之数据结构中的排序七大算法-java实现
package ds; /* * author : codinglion * contact: chenyakun@foxmail.com */ import java.util.Random; pu ...
- C++数据结构中的基本算法排序
冒泡排序 基本思想:两两比较待排序的数,发现反序时交换,直到没有反序为止. public static void BubbleSort(int[] R) { for (int i = 0; i < ...
- 数据结构中常用的排序算法 && 时间复杂度 && 空间复杂度
第一部分:数据结构中常用的排序算法 数据结构中的排序算法一般包括冒泡排序.选择排序.插入排序.归并排序和 快速排序, 当然还有很多其他的排序方式,这里主要介绍这五种排序方式. 排序是数据结构中的主要内 ...
- [POJ] 3461 Oulipo [KMP算法]
Oulipo Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 23667 Accepted: 9492 Descripti ...
- 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)
数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...
- Java高级工程师需要弄明白的20个知识点
一般的程序员或许只需知道一些JAVA的语法结构,能对数据库数据进行CRUD就可以应付了.但要成为JAVA(高级) 工程师,就要对JAVA做比较深入的研究,需要不断学习进步,以下对高级工程师需要突破的知 ...
- 弄明白CMS和G1,就靠这一篇了
目录 1 CMS收集器 安全点(Safepoint) 安全区域 2 G1收集器 卡表(Card Table) 3 总结 4 参考 在开始介绍CMS和G1前,我们可以剧透几点: 根据不同分代的特点,收集 ...
- [Data Structure] 数据结构中各种树
数据结构中有很多树的结构,其中包括二叉树.二叉搜索树.2-3树.红黑树等等.本文中对数据结构中常见的几种树的概念和用途进行了汇总,不求严格精准,但求简单易懂. 1. 二叉树 二叉树是数据结构中一种重要 ...
- 几张图弄明白ios布局中的尺寸问题
背景 先说说逆向那事.各种曲折..各种技术过时,老老实实在啃看雪的帖子..更新会有的. 回正题,这里讨论的是在Masnory框架下的布局问题.像我这种游击队没师傅带,什么都得自己琢磨,一直没闹明白下面 ...
随机推荐
- MySQL 监控
•Table_locks_immediate The number of times that a request for a table lock could be granted immedia ...
- WPF框架MVVM简单例子
MVVM是Model-View-ViewModel的缩写形式,它通常被用于WPF或Silverlight开发.Model——可以理解为带有字段,属性的类.View——可以理解为我们所看到的UI.Vie ...
- MVC基础知识
1.View中获取Control和View: //获取控制器名称: ViewContext.RouteData.Values["controller"].ToString(); / ...
- jquery 生成 html 绑定
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- PHP日期操作类代码-农历-阳历转换、闰年、计算天数等
<?php class Lunar { var $MIN_YEAR = 1891; var $MAX_YEAR = 2100; var $lunarInfo = array( array(0,2 ...
- php同步mysql两个数据库中表的数据
分别创建两个数据库和两张表study库-zone表teaching库-area表 //****SQL脚本****// 1.创建teaching数据库area数据表 create database te ...
- 常见IE浏览器bug及其修复方案(双外边距、3像素偏移、绝对定位)
1. 双外边距浮动bug IE6和更低版本中存在双外边距浮动bug,顾名思义,这个Windows bug使任何浮动元素上的外边距加倍 bug重现: <!DOCTYPE html> < ...
- 10个很棒的学习Android 开发的网站(转)
看到江湖旅人 写的<10个很棒的学习iOS开发的网站 - 简书>,所以就忍不住写Android 啦,也希望对大家有帮助.我推荐的网站,都是我在学习Android 开发过程中发现的好网站,给 ...
- android AsyncTask介绍(转)
android AsyncTask介绍 AsyncTask和Handler对比 1 ) AsyncTask实现的原理,和适用的优缺点 AsyncTask,是android提供的轻量级的异步类,可以直接 ...
- 类模板Queue的实现
#include <iostream> #include <vector> using namespace std; template <class Type> c ...