1. OnProbabilityModel()
  2. {
  3. int i;
  4. for(int x=0;x<workImg->height;x++)
  5. {
  6. for(int y=0;y<workImg->width;y++)
  7. {
  8. //double cur[3];
  9. CvMat* cur=cvCreateMat(3,1,CV_32F);
  10. for(i=0;i<3;i++){
  11. double tt=((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+i];
  12. cvmSet(cur,i,0,tt);
  13. }
  14. CvMat dst=cvRGB2YCbCr(cur);
  15. if(CalProbability(WHITE,&dst)<0.1&&CalProbability(YELLOW,&dst)<0.1)
  16. for (i=0;i<3;i++)
  17. ((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+i]=0;
  18. }
  19. }
  20. Invalidate();
  21. }
  1. double CalProbability(int classid,CvMat* cur)
  2. {
  3. /************************************************************************/
  4. /* function:
  5. 一个像素点cur[3]={r,g,b}; 它属于classid色类的概率
  6. */
  7. /************************************************************************/
  8. double temp,t1;
  9. CvMat inv_w,inv_y;
  10. cvInitMatHeader(&inv_w,3,3,CV_32F,Inv_white);
  11. cvInitMatHeader(&inv_y,3,3,CV_32F,Inv_yellow);
  12. CvMat* tmp=cvCreateMat(1,3,CV_32F);
  13. CvMat* tmp1=cvCreateMat(1,3,CV_32F);
  14. CvMat* res=cvCreateMat(1,1,CV_32F);
  15. //double tmp[3][3],tmp1[3][3];
  16. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  17. temp=1/pow(2*PI,3/2)/sqrt(norm[classid]);
  18. //cvmGetMat()
  19. for (i=0;i<3;i++)    {
  20. double x=cvmGet(cur,i,0);
  21. x-=mean_ycbcr[classid][i];
  22. if(x<0)
  23. x=0;
  24. cvmSet(cur,i,0,x);
  25. }
  26. double c1=cvmGet(cur,0,0);
  27. double c2=cvmGet(cur,1,0);
  28. double c3=cvmGet(cur,2,0);
  29. cvTranspose(cur,tmp);//转置
  30. if(classid==WHITE)
  31. cvmMul(tmp,&inv_w,tmp1);
  32. else if(classid==YELLOW)
  33. cvmMul(tmp,&inv_y,tmp1);
  34. cvmMul(tmp1,cur,res);
  35. //t1=cvNorm(tmp,0,CV_L1,0);
  36. t1=cvmGet(res,0,0);
  37. t1*=(-0.5);
  38. temp*=pow(Ezhishu,t1);
  39. return temp;
  40. }

from: http://blog.csdn.net/abcjennifer/article/details/7392373

三维高斯模型 opencv实现的更多相关文章

  1. Opencv混合高斯模型前景分离

    #include "stdio.h" #include "string.h" #include "iostream" #include &q ...

  2. 混合高斯模型:opencv中MOG2的代码结构梳理

    /* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include&q ...

  3. OpenCV混合高斯模型函数注释说明

    OpenCV混合高斯模型函数注释说明 一.cvaux.h #define CV_BGFG_MOG_MAX_NGAUSSIANS 500 //高斯背景检测算法的默认参数设置 #define CV_BGF ...

  4. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  5. 运动检测(前景检测)之(二)混合高斯模型GMM

    运动检测(前景检测)之(二)混合高斯模型GMM zouxy09@qq.com http://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新 ...

  6. [转]运动检测(前景检测)之(二)混合高斯模型GMM

    转自:http://blog.csdn.net/zouxy09/article/details/9622401 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的 ...

  7. PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...

  8. 混合高斯模型(GMM)推导及实现

    作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...

  9. 混合高斯模型(Mixtures of Gaussians)和EM算法

    这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...

随机推荐

  1. CF 55D. Beautiful numbers(数位DP)

    题目链接 这题,没想出来,根本没想到用最小公倍数来更新,一直想状态压缩,不过余数什么的根本存不下,看的von学长的blog,比着写了写,就是模版改改,不过状态转移构造不出,怎么着,都做不出来. #in ...

  2. URAL 1303. Minimal Coverage(DP)

    题目链接 又是输出路径...这题完全受上题影响,感觉两个题差不多..用了基本上一样的算法写了,这题比较纠结,就是卡内存啊...5000*5000的数组开不了..然后没办法,水了好几次MLE,看了一下虎 ...

  3. java代码过滤emoji表情

    可以新建一个过滤器的类,在类中书写如下代码: public static String filterEmoji(String source) {           if(source != null ...

  4. 清空highcharts数据

    1:清空highcharts图表的数据我们常用的方法就是remove() var seriesList = chart.series; //获得图表的所有序列 var seriesCount=seri ...

  5. .NET易忘备留 ORACLE存储过程调用

    1.Oracle存储过程调用[返回信息,单体或者列表] public IResult FundBuild(string partnerId,string userId, DateTime beginD ...

  6. Nodejs Http发送post请求

    Nodejs  Http发送post请求 var http = require('http'); function epay(params) { console.log(" COME IN& ...

  7. (转)深入理解flash重绘

    深入理解Flash Player重绘 Flash Player 会以SWF内容的帧频速度来刷新需要变化的内容,而这个刷新的过程,我们通常称为“重绘(redraw)”,相信即便是初级的菜鸟也知道,只要使 ...

  8. 获取Android studio的SHA1值

    D:\Android\BaiduMapsApiASDemo>c: C:\>cd .android 系统找不到指定的路径. C:\>cd Users C:\Users>cd Ad ...

  9. Oracle求部门员工工资占总工资的比率

    --根据每个部门来统计部门工资总和 select deptid, sum(sal) 工资合计 from emp group by deptid; --根据每个部门来统计部门工资总和select dep ...

  10. SBT Assembly - Deduplicate error & Exclude error

    sbt assembly java.lang.RuntimeException: deduplicate: different file contents found in the following ...