3238: [Ahoi2013]差异

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 1561  Solved: 734
[Submit][Status][Discuss]

Description

Input

一行,一个字符串S

Output

一行,一个整数,表示所求值

Sample Input

cacao

Sample Output

54

HINT

2<=N<=500000,S由小写英文字母组成

Source

Solution

后缀数组+单调栈

LCP的话,预处理ST表,然后直接求?似乎不好,不过后缀数组的话很好想

肯定是对height做文章...总后缀的长度和很好求..随便一算就出来了...考虑LCP的问题

想法是枚举i,对于每个height[i]前后扩展,找出对答案的贡献,然后最后计算答案..似乎可以,但是WA掉了..

原因是有重复计算,那么要不重复..上述是左右两边扩展,使得区间[l,r]中height[i]为最小,重复的很多,思想还是一样的不过不妨把区间看成[l,r)(PS,其实表述不准确),这样的扩展下去,即向左有限制,向右无限制,向左扩展到相等的就停止,向右遇到相等的可以继续.

那么需要用单调栈去维护扩展的过程..这样就能得到每一个height[i]对答案的贡献了,最后答案需要减掉(i-L[i]+1)*(R[i]-i+1)*(height[i])

注意:

在计算答案的过程中要强制转换.(旧错不再犯)

处理后的单调栈内如果为空,说明可以扩展到开头/结尾(也是看别人的才反应过来的)

PS:正解好像不是这个?...不过POJ上好像做过类似的题,所以写起来还是比较快的..

Code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 500010
char S[maxn]; int SA[maxn],len;
int ws[maxn],wv[maxn],wa[maxn],wb[maxn];
int cmp(int *r,int a,int b,int l)
{
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void DA(char *r,int *sa,int n,int m)
{
int p,*x=wa,*y=wb,*t;
for (int i=; i<m; i++) ws[i]=;
for (int i=; i<n; i++) ws[x[i]=r[i]]++;
for (int i=; i<m; i++) ws[i]+=ws[i-];
for (int i=n-; i>=; i--) sa[--ws[x[i]]]=i;
p=; for (int j=; p<n; j*=,m=p)
{
p=; for (int i=n-j; i<n; i++) y[p++]=i;
for (int i=; i<n; i++) if (sa[i]>=j) y[p++]=sa[i]-j;
for (int i=; i<n; i++) wv[i]=x[y[i]];
for (int i=; i<m; i++) ws[i]=;
for (int i=; i<n; i++) ws[wv[i]]++;
for (int i=; i<m; i++) ws[i]+=ws[i-];
for (int i=n-; i>=; i--) sa[--ws[wv[i]]]=y[i];
t=x; x=y; y=t; p=; x[sa[]]=;
for (int i=; i<n; i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
}
}
int rank[maxn],height[maxn];
void calheight(char *r,int *sa,int n)
{
int k=;
for (int i=; i<=n; i++) rank[sa[i]]=i;
for (int i=; i<n; height[rank[i++]]=k)
{k?k--:;for (int j=sa[rank[i]-]; r[i+k]==r[j+k]; k++);}
}
int stack[maxn],top,L[maxn],R[maxn];
long long tot,lcp;
int main()
{
scanf("%s",S); len=strlen(S); S[len]=;
DA(S,SA,len+,); calheight(S,SA,len);
tot=(long long)((long long)len*(long long)(len-)*(long long)(len+)/);
top=; stack[]=;
for (int i=; i<=len; i++)
{
while (top && height[stack[top-]]>height[i]) top--;
if (top) L[i]=stack[top-]+;
else L[i]=;
stack[top++]=i;
}
top=; stack[]=len;
for (int i=len; i>=; i--)
{
while (top && height[stack[top-]]>=height[i]) top--;
if (top) R[i]=stack[top-]-;
else R[i]=len;
stack[top++]=i;
}
for (int i=; i<=len; i++)
lcp+=(long long)*(long long)(i-L[i]+)*(long long)(R[i]-i+)*(long long)height[i];
printf("%lld\n",tot-lcp);
return ;
}

【BZOJ-3238】差异 后缀数组 + 单调栈的更多相关文章

  1. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  2. 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈

    [BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  3. [AHOI2013] 差异 - 后缀数组,单调栈

    [AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...

  4. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  5. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  6. BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)

    BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...

  7. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  8. 【BZOJ3879】SvT 后缀数组+单调栈

    [BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...

  9. BZOJ_3879_SvT_后缀数组+单调栈

    BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...

随机推荐

  1. PAT 1004. 成绩排名 (20) JAVA

    读入n名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式:每个测试输入包含1个测试用例,格式为 第1行:正整数n 第2行:第1个学生的姓名 学号 成绩 第3行:第2个学生 ...

  2. T138

    这一列车. 十年前送我去西安, 十年后搭我返故乡. 十年前手拉着手儿, 十年后独对着车窗.   这一列车. 装饰着坚毅的中国蓝, 却失去了往日光环. 只有通往偏远.落后的地方, 只有没赶上高铁动车的行 ...

  3. NOI2018准备Day4

    上午9点20至11点50就做出了一道题,一个很基础的二分挡住了,原因是浮点数精度问题的处理,现在还搞不懂,为什么用double存进去两位小数过不了,用double存进去两位小数再*100再/100就能 ...

  4. HDU1281-棋盘游戏-二分图匹配

    先跑一个二分图匹配,然后一一删去匹配上的边,看能不能达到最大匹配数,不能这条边就是重要边 /*----------------------------------------------------- ...

  5. Expression Blend4经验分享:制作一个简单的文字按钮样式

    首先在Grid里放一个TextBlock,对象时间线窗口的结构树如下 右键点击grid,选择构成控件 会弹出构成控件的对话框,选择你要构成的控件类型,控件名称,控件样式存储位置 这里我们选择butto ...

  6. 移动端调试利器 JSConsole 介绍

    先看这篇文章 Web应用调试:现在是Weinre和JSConsole,最终会是WebKit的远程调试协议. 我们先不看未来,从此文可见,当下的移动端调试还是 Weinre 和 JSConsole 的天 ...

  7. HTTP 状态代码表示什么意思?

    HTTP 状态代码表示什么意思? 如果某项请求发送到您的服务器要求显示您网站上的某个网页,服务器将会返回 HTTP 状态码响应请求.此状态代码提供关于请求状态的信息,一些常见的状态代码为: 200 - ...

  8. BroadcastReceiver之应用卸载和安装监听

    首先创建一个类继承BroadcastReceiver,然后配置Manifest.xml <receiver android:name=".PackageAddRemove"& ...

  9. XML中的DOCTYPE属性

    一.先来两个小例子 内部dtd将standalone设为真. <?xml version="1.0" standalone="yes"?> < ...

  10. C# 反射范范的理解下

    程序进行时引入程序集.动态的调用方法属性事件. Assembly类. type类.