子序列

时间限制:3000 ms  |  内存限制:65535 KB
难度:5
 
描述

给定一个序列,请你求出该序列的一个连续的子序列,使原串中出现的所有元素皆在该子序列中出现过至少1次。

如2 8 8 8 1 1,所求子串就是2 8 8 8 1。

 
输入
第一行输入一个整数T(0<T<=5)表示测试数据的组数
每组测试数据的第一行是一个整数N(1<=N<=1000000),表示给定序列的长度。
随后的一行有N个正整数,表示给定的序列中的所有元素。
数据保证输入的整数都不会超出32位整数的范围。
输出
对于每组输入,输出包含该序列中所有元素的最短子序列的长度
样例输入
2
5
1 8 8 8 1
6
2 8 8 8 1 1
样例输出
2
5 解题思路:刚开始看了网上的解题报告,有个类似的题,可以用stl中的集合set和键值对map来做,结果超时,实践发现每次数据一大,用STL就会超时。
离散化
:将a数组的备份temp[]排序,然后把不重复的值都弄到X数组中,接下来开始挨着求出a中的每一个元素在X中的位置,用index记录。
  这样每次到a[i],index[i]中记录的就是a[i]在X[]中的位置。
  尺取法:
  通过观察发现,所求序列的第一个一定是在序列中只出现1次的,不然就可以直接把这个舍去了。
  设置s,e分别为所求序列的起始和结束。
  e每次都++,然后当序列中元素个数==非重复元素个数len时,要用minn记录此时序列长度。然后再s++(直到X[index[s]]==1)。
  最后到e不小于n然后结束。
  
  

 代码:

#include<cstdio>
#include <iostream>
#include<map>
#include<set>
#include<algorithm>
#include <cstring>
#define MAXN 1000005 using namespace std; int n;
int cou;
int a[MAXN];//所有元素
int X[MAXN];//不重复元素
int temp[MAXN];//临时
int inde[MAXN];//存储a[]中每一个元素在X中的下标 int bin_search(int cou,int aa){
int s=,e=cou-;
int mid;
while(s<=e){
mid=(s+e)>>;
if(X[mid]==aa){
return mid;
}else{
if(aa<X[mid]){
e=mid-;
}else{
s=mid+;
}
} }
} void discrete(){
cou=;
sort(temp,temp+n);
X[]=temp[];
for(int i=;i<n;i++){
if(temp[i]!=temp[i-]){
X[cou++]=temp[i];
}
}
for(int i=;i<n;i++){
inde[i]=bin_search(cou,a[i]);
}
} int main()
{
int t;
scanf("%d",&t);
while(t--){ int minn=;
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d",&a[i]);
temp[i]=a[i];
}
discrete();
memset(X,,sizeof(X));
int len=cou;
int s=,e=;
int number=;
while(e<n){
if(X[inde[e]]==) number++;
X[inde[e]]++;
while(X[inde[s]]>=){
X[inde[s]]--;
s++;
}
if(number==len){
minn=min(minn,e-s+);
/*if(X[inde[s]]==1)*/ number--;
X[inde[s]]--;
s++;
}
e++;
}
printf("%d\n",minn);
}
return ;
}

nyoj133_子序列_离散化_尺取法的更多相关文章

  1. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  2. 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化

    洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...

  3. BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德

    BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...

  4. Unique Snowflakes UVA - 11572 (离散化+尺取法)

    Emily the entrepreneur has a cool business idea: packaging and selling snowflakes. She has devised a ...

  5. POJ3666 线性dp_离散化_贪心

    POJ3666 线性dp_离散化_贪心 就DP而言这个题不算难,但是难就难在贪心,还有离散化的思想上 题目大意:n个土堆,问你最少移动多少单位的图,可以使得这n个土堆变成单调的 dp[i][j]表示前 ...

  6. 51Nod 1686 第K大区间(离散化+尺取法)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1686 题意: 思路: 第K大值,所以可以考虑二分法,然后用尺取法去扫描, ...

  7. 离散化+线段树/二分查找/尺取法 HDOJ 4325 Flowers

    题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前 ...

  8. NOI2016区间bzoj4653(线段树,尺取法,区间离散化)

    题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间,使得这 \(M\) 个区间共同包含至少一个 ...

  9. POJ 尺取法

    poj3061 Subsequence 题目链接: http://poj.org/problem?id=3061 挑战P146.题意:给定长度为n的数列整数a0,a1,...,a(n-1)以及整数S, ...

随机推荐

  1. 分享php中四种webservice实现的简单架构方法及实例

    一:PHP本身的SOAP所有的webservice都包括服务端(server)和客户端(client).要使用php本身的soap首先要把该拓展安装好并且启用.下面看具体的code首先这是服务端实现: ...

  2. MySQL性能优化的最佳经验,随时补充

    1.为查询优化你的查询 大多数的MySQL服务器都开启了查询缓存.这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的.当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存 ...

  3. OC第三节——NSArray和NSMutableArray

    1.OC数组和c数组的区别        C语言的数组:            相同类型变量的有序结合. 类型:可以是简答数据类型.构造数据类型                int     a[10 ...

  4. 使用 IntelliJ IDEA 导入 Spark源码及编译 Spark 源代码

    1. 准备工作 首先你的系统中需要安装了 JDK 1.6+,并且安装了 Scala.之后下载最新版的 IntelliJ IDEA 后,首先安装(第一次打开会推荐你安装)Scala 插件,相关方法就不多 ...

  5. iOS开发——多线程篇——NSThread

    一.基本使用1.创建和启动线程一个NSThread对象就代表一条线程 创建.启动线程NSThread *thread = [[NSThread alloc] initWithTarget:self s ...

  6. Unity3d用户手册用户指南 电影纹理(Movie Texture)

    http://www.58player.com/blog-2327-952.html 电影纹理(Movie Texture) 注意:这只是专业/高级功能.   桌面 电影纹理是从视频文件创建的动画纹理 ...

  7. Windows 10磁盘占用100%解决办法

    开机后磁盘占用高,是因为 windows 10 默认启用了 superfetch 服务.   这个服务的主要功能是加快程序的启动速度.开机以后,系统将那些经常使用的程序,预先从硬盘加载到内存中,这样, ...

  8. cvLoadImage

    编辑 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 函数原型:IplImage* cvLoadImage( const char* filename, int flags= ...

  9. PHP中interface与 implements 关键字

    类中接口的应用 1.关键字:interface 2.关键字:implements 1.接口的介绍与创建 接口:一种成员属性全部为抽象或常量的特殊抽象类. 规则: 1.类中全部为抽象方法. 2.抽象方法 ...

  10. buildroot 添加ssh,以及使用stftp 服务

    上一篇水了一下关于buildroot的基本操作,这一章水一下开启SSH服务以及配置sftp服务,以及静态IP的设置. 配置: make menuconfig Target packages  ---& ...