分析

我们将没连的点连向周围四个点

其余的按照给定的方向连

我们将所有连出去的位置统一连到0点上

再以0作为树根

于是就将问题转化为了有向图内向树计数

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int mod = 1e9+;
const int dx[] = {,-,,};
const int dy[] = {,,,-};
int n,m,g[][],id[][],cnt,ok;
char s[][];
inline void add(int x,int y){
g[y][y]++;
g[y][x]--;
}
inline int dfs(int x, int y, int len) {
if(x<||x>n||y<||y>m)return ;
if(id[x][y]!=-)return id[x][y];
if(len>n*m){
ok=;
return ;
}
if(s[x][y]=='L')return id[x][y]=dfs(x,y-,len+);
if(s[x][y]=='R')return id[x][y]=dfs(x,y+,len+);
if(s[x][y]=='U')return id[x][y]=dfs(x-,y,len+);
if(s[x][y]=='D')return id[x][y]=dfs(x+,y,len+);
}
inline int gs(){
int i,j,k,ans=;
for(i=;i<=cnt;i++)
for(j=;j<=cnt;j++)
g[i][j]=(g[i][j]%mod+mod)%mod;
for(i=;i<=cnt;i++){
for(j=i;j<=cnt;j++)
if(g[i][j])break;
if(j>cnt)return ;
if(j!=i)ans=mod-ans,swap(g[i],g[j]);
for(j=i+;j<=cnt;j++){
while(g[j][i]){
int t=g[i][i]/g[j][i];
for(k=i;k<=cnt;k++)
g[i][k]=(g[i][k]-1ll*t*g[j][k]%mod+mod)%mod;
ans=mod-ans;
swap(g[i],g[j]);
}
}
ans=1ll*ans*g[i][i]%mod;
}
return ans;
}
inline void solve(){
int i,j,k;
ok=;
cnt=;
memset(g,,sizeof(g));
memset(id,-,sizeof(id));
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)scanf("%s",s[i]+);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
if(s[i][j]=='.')
id[i][j]=++cnt;
for(i=;i<=n;i++)
for(j=;j<=m;j++)
if(s[i][j]=='.'){
for(k=;k<;k++)
add(dfs(i+dx[k],j+dy[k],),id[i][j]);
}else dfs(i,j,);
if(ok){
puts("");
return;
}
printf("%d\n",gs());
return;
}
int main(){
int t;
scanf("%d",&t);
while(t--)solve();
return ;
}

loj6259「CodePlus 2017 12 月赛」白金元首与独舞的更多相关文章

  1. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  2. 【LibreOJ】#6259. 「CodePlus 2017 12 月赛」白金元首与独舞

    [题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=20 ...

  3. 「CodePlus 2017 12 月赛」白金元首与独舞

    description 题面 data range \[ 1 \leq T \leq 10, 1 \leq n, m \leq 200 , 0 \leq k \leq \min(nm, 300)\] ...

  4. 走进矩阵树定理--「CodePlus 2017 12 月赛」白金元首与独舞

    n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未 ...

  5. 「CodePlus 2017 12 月赛」火锅盛宴(模拟+树状数组)

    1A,拿来练手的好题 用一个优先队列按煮熟时间从小到大排序,被煮熟了就弹出来. 用n个vector维护每种食物的煮熟时间,显然是有序的. 用树状数组维护每种煮熟食物的数量. 每次操作前把优先队列里煮熟 ...

  6. 「CodePlus 2017 12 月赛」可做题2(矩阵快速幂+exgcd+二分)

    昨天这题死活调不出来结果是一个地方没取模,凉凉. 首先有个一眼就能看出来的规律... 斐波那契数列满足$a_1, a_2, a_1+a_2, a_1+2a_2, 2a_1+3a_2, 3a_1+5a_ ...

  7. 【LIbreOJ】#6256. 「CodePlus 2017 12 月赛」可做题1

    [题意]定义一个n阶正方形矩阵为“巧妙的”当且仅当:任意选择其中n个不同行列的数字之和相同. 给定n*m的矩阵,T次询问以(x,y)为左上角的k阶矩阵是否巧妙.n,m<=500,T<=10 ...

  8. 【LibreOJ】#6257. 「CodePlus 2017 12 月赛」可做题2

    [题意]数列满足an=an-1+an-2,n>=3.现在a1=i,a2=[l,r],要求满足ak%p=m的整数a2有多少个.10^18. [算法]数论(扩欧)+矩阵快速幂 [题解]定义fib(i ...

  9. 「CodePlus 2017 12 月赛」火锅盛宴

    n<=100000种食物,给每个食物煮熟时间,有q<=500000个操作:在某时刻插入某个食物:查询熟食中编号最小的并删除之:查询是否有编号为id的食物,如果有查询是否有编号为id的熟食, ...

随机推荐

  1. ceph部署问题解决

    注意:1.ceph-deploy实用程序将输出文件到当前目录.执行ceph-deploy时确保你在这个目录下.2.不要使用sudo调用ceph-deploy,要么以root用户身份运行它,因为它不会发 ...

  2. 红黑树的删除操作---以JDK源码为例

    删除操作需要处理的情况: 1.删除的是红色节点,则删除节点并不影响红黑树的树高,无需处理. 2.删除的是黑色节点,则删除后,删除节点所在子树的黑高BH将减少1,需要进行调整. 节点标记: 正在处理的节 ...

  3. CSS浏览器兼容性

    答题技巧:因为这个问题主要是看你经验,一般有了开发经验的都会遇到这样的坑,你只要说出几个来大致就可以了. 1.对齐文本和文本输入框 问题: 当input元素在设置了高时,在IE7.IE8.IE9下会出 ...

  4. Balanced Lineup poj3264 线段树

    Balanced Lineup poj3264 线段树 题意 一串数,求出某个区间的最大值和最小值之间的差 解题思路 使用线段树,来维护最大值和最小值,使用两个查询函数,一个查区间最大值,一个查区间最 ...

  5. [Codeforces 1199C]MP3(离散化+二分答案)

    [Codeforces 1199C]MP3(离散化+二分答案) 题面 给出一个长度为n的序列\(a_i\)和常数I,定义一次操作[l,r]可以把序列中<l的数全部变成l,>r的数全部变成r ...

  6. (前篇:NIO系列 推荐阅读) Java NIO 底层原理

    出处: Java NIO 底层原理 目录 1.1. Java IO读写原理 1.1.1. 内核缓冲与进程缓冲区 1.1.2. java IO读写的底层流程 1.2. 四种主要的IO模型 1.3. 同步 ...

  7. 山区建小学(区间dp+前缀和+预处理)

    [题目描述] 政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di(为正整数),其中,0 < i ...

  8. HTML5-video(播放暂停视频;打开关闭声音;进度条)

    <!DOCTYPE html> <html> <head> <title>HTML5-video(播放暂停视频:打开关闭声音:进度条)</titl ...

  9. Linux安装软件-CentOS和Ubuntu介绍

    开发十年,就只剩下这套架构体系了! >>>   不同Linux发行版的软件安装会有不同的方式,其中CentOS安装软件的主要方式是rpm和yum,Ubuntu可以使用apt-get, ...

  10. MYSQL学习笔记——数据库范式及MYSQL优化整体思路

    一.数据库范式                                                                               为了建立冗余较小.结构合理的 ...